ArticleOriginal scientific text
Title
Algebraic characterization of finite (branched) coverings
Authors 1
Affiliations
- Departamento de Matemáticas, Universidad de Extremadura, 06071 Badajoz, Spain
Abstract
Every continuous map X → S defines, by composition, a homomorphism between the corresponding algebras of real-valued continuous functions C(S) → C(X). This paper deals with algebraic properties of the homomorphism C(S) → C(X) in relation to topological properties of the map X → S. The main result of the paper states that a continuous map X → S between topological manifolds is a finite (branched) covering, i.e., an open and closed map whose fibres are finite, if and only if the induced homomorphism C(S) → C(X) is integral and flat.
Keywords
branched covering, open and closed map, ring of continuous functions, flat homomorphism, integral homomorphism
Bibliography
- M. Atiyah and I. G. MacDonald, Introduction to Commutative Algebra, Addison-Wesley, 1969.
- R. L. Blair and A. W. Hagger, Extensions of zero-sets and of real-valued functions, Math. Z. 136 (1974), 41-52.
- N. Bourbaki, Algèbre Commutative, Chs. 1 and 2, Hermann, 1961.
- V. I. Danilov, Algebraic varieties and schemes, in: Algebraic Geometry I, I. R. Shafarevich (ed.), Encyclopaedia Math. Sci. 23, Springer, 1994.
- R. Engelking, General Topology, Heldermann, 1989.
- L. Gillman and M. Jerison, Rings of Continuous Functions, Springer, 1976.
- K. R. Goodearl, Local isomorphisms of algebras of continuous functions, J. London Math. Soc. (2) 16 (1977), 348-356.
- A. Grothendieck, Éléments de Géométrie Algébrique IV, Inst. Hautes Études Sci. Publ. Math. 28 (1966).
- T. Isiwata, Mappings and spaces, Pacific J. Math. 20 (1967), 455-480.
- L. F. McAuley and E. E. Robinson, Discrete open and closed maps on generalized continua and Newman's property, Canad. J. Math. 36 (1984), 1081-1112.
- B. Malgrange, Ideals of Differentiable Functions, Oxford Univ. Press, 1966.
- W. S. Massey, Algebraic Topology: An Introduction, Springer, 1967.
- H. Matsumura, Commutative Ring Theory, Cambridge Univ. Press, 1986.
- M. A. Mulero, Algebraic properties of rings of continuous functions, Fund. Math. 149 (1996), 55-66.
- M. A. Mulero, Rings of continuous functions and the branch set of a covering, Proc. Amer. Math. Soc. 126 (1998), 2183-2189.
- J. C. Tougeron, Idéaux de Fonctions Différentiables, Springer, 1972.