ArticleOriginal scientific text

Title

Algebraic characterization of finite (branched) coverings

Authors 1

Affiliations

  1. Departamento de Matemáticas, Universidad de Extremadura, 06071 Badajoz, Spain

Abstract

Every continuous map X → S defines, by composition, a homomorphism between the corresponding algebras of real-valued continuous functions C(S) → C(X). This paper deals with algebraic properties of the homomorphism C(S) → C(X) in relation to topological properties of the map X → S. The main result of the paper states that a continuous map X → S between topological manifolds is a finite (branched) covering, i.e., an open and closed map whose fibres are finite, if and only if the induced homomorphism C(S) → C(X) is integral and flat.

Keywords

branched covering, open and closed map, ring of continuous functions, flat homomorphism, integral homomorphism

Bibliography

  1. M. Atiyah and I. G. MacDonald, Introduction to Commutative Algebra, Addison-Wesley, 1969.
  2. R. L. Blair and A. W. Hagger, Extensions of zero-sets and of real-valued functions, Math. Z. 136 (1974), 41-52.
  3. N. Bourbaki, Algèbre Commutative, Chs. 1 and 2, Hermann, 1961.
  4. V. I. Danilov, Algebraic varieties and schemes, in: Algebraic Geometry I, I. R. Shafarevich (ed.), Encyclopaedia Math. Sci. 23, Springer, 1994.
  5. R. Engelking, General Topology, Heldermann, 1989.
  6. L. Gillman and M. Jerison, Rings of Continuous Functions, Springer, 1976.
  7. K. R. Goodearl, Local isomorphisms of algebras of continuous functions, J. London Math. Soc. (2) 16 (1977), 348-356.
  8. A. Grothendieck, Éléments de Géométrie Algébrique IV, Inst. Hautes Études Sci. Publ. Math. 28 (1966).
  9. T. Isiwata, Mappings and spaces, Pacific J. Math. 20 (1967), 455-480.
  10. L. F. McAuley and E. E. Robinson, Discrete open and closed maps on generalized continua and Newman's property, Canad. J. Math. 36 (1984), 1081-1112.
  11. B. Malgrange, Ideals of Differentiable Functions, Oxford Univ. Press, 1966.
  12. W. S. Massey, Algebraic Topology: An Introduction, Springer, 1967.
  13. H. Matsumura, Commutative Ring Theory, Cambridge Univ. Press, 1986.
  14. M. A. Mulero, Algebraic properties of rings of continuous functions, Fund. Math. 149 (1996), 55-66.
  15. M. A. Mulero, Rings of continuous functions and the branch set of a covering, Proc. Amer. Math. Soc. 126 (1998), 2183-2189.
  16. J. C. Tougeron, Idéaux de Fonctions Différentiables, Springer, 1972.
Pages:
165-180
Main language of publication
English
Received
1997-08-19
Accepted
1998-06-22
Published
1998
Exact and natural sciences