Under $MA_{ω_1}$ every uncountable almost disjoint family is either anti-Luzin or has an uncountable Luzin subfamily. This fails under CH. Related properties are also investigated.
Institute, Hungarian Academy of Sciences, POB 127, H-1364 Budapest, Hungary
Bibliografia
[AT] U. Abraham and S. Todorčević, Partition properties of $ω_1$ compatible with CH, Fund. Math. 152 (1997), 165-181.
[EF] F. Eckertson, W. Fleissner, A. Korovin and R. Levy, Not realcompact images of not Lindelöf spaces, Topology Appl. 58 (1994), 115-125.
[HJ] A. Hajnal and I. Juhász, Intersection properties of open sets, ibid. 19 (1985), 201-209.
[JN] I. Juhász, Zs. Nagy, L. Soukup and Z. Szentmiklóssy, Intersection properties of open sets, II, in: Papers on General Topology and Applications, Proc. 10th Summer Conference in General Topology and Applications, 1994, E. Coplakova and K. P. Hart (eds.), Ann. New York Acad. Sci. 788, New York Acad. Sci., 1996, 147-159.
[JS] I. Juhász, L. Soukup and Z. Szentmiklóssy, Combinatorial principles from adding Cohen reals, in: Logic Colloquium 95, Haifa, to appear.
[K] S. Koppelberg, Handbook of Boolean Algebras, Vol. I, North-Holland, Amsterdam, 1987.
[L] N. Luzin, On parts of the natural series, Izv. Akad. Nauk SSSR Ser. Mat. 11 (1947), 403-410 (in Russian).
[V] B. Velickovic, OCA and automorphisms of P(ω)/fin, Topology Appl. 49 (1993), 1-13.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.bwnjournal-article-fmv158i1p51bwm
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.