ArticleOriginal scientific text

Title

Computing Reidemeister classes

Authors 1

Affiliations

  1. Università degli Studi di Milano, Dipartimento di Matematica, Via Saldini 50, 20133 Milano, Italy

Abstract

In order to compute the Nielsen number N(f) of a self-map f: X → X, some Reidemeister classes in the fundamental group π1(X) need to be distinguished. In this paper some algebraic results are given which allow distinguishing Reidemeister classes and hence computing the Reidemeister number of some maps. Examples of computations are presented.

Keywords

Reidemeister numbers, fixed point theory, Nielsen numbers

Bibliography

  1. [B] R. F. Brown, The Lefschetz Fixed Point Theorem, Scott and Foresman, 1971.
  2. [DHT] O. Davey, E. Hart and K. Trapp, Computation of Nielsen numbers for maps of closed surfaces, Trans. Amer. Math. Soc. 348 (1996), 3245-3266.
  3. [FaHu] E. Fadell and S. Husseini, The Nielsen number on surfaces, in: Contemp. Math. 21, Amer. Math. Soc., 1983, 59-98.
  4. [FeHi] A. Fel'shtyn and R. Hill, The Reidemeister zeta function with applications to Nielsen theory and a connection with Reidemeister torsion, K-Theory 8 (1994), 367-393.
  5. [Ha] B. Halpern, Periodic points on the Klein bottle, manuscript.
  6. [He] P. R. Heath, Product formulae for Nielsen numbers of fibre maps, Pacific J. Math. 117 (1985), 267-289.
  7. [HKW] P. R. Heath, E. Keppelmann and P. N. S. Wong, Addition formulae for Nielsen numbers and Nielsen-type numbers of fibre preserving maps, Topology Appl. 67 (1995), 133-157.
  8. [Hu] S. Y. Husseini, Generalized Lefschetz numbers, Trans. Amer. Math. Soc. 272 (1982), 247-274.
  9. [J] B. J. Jiang, Lectures on Nielsen Fixed Point Theory, Contemp. Math. 14, Amer. Math. Soc., Providence, 1983.
  10. [MKS] W. Magnus, A. Karrass and D. Solitar, Combinatorial Group Theory: Presentations of Groups in Terms of Generators and Relations, Dover, 1966.
  11. [McC] C. K. McCord, Computing Nielsen numbers, in: Nielsen Theory and Dynamical Systems (South Hadley, Mass., 1992), Contemp. Math. 152, Amer. Math. Soc., Providence, 1993, 249-267.
  12. [W] P. Wong, Fixed-point theory for homogeneous spaces, Amer. J. Math. 120 (1998), 23-42.
  13. [Y] C. Y. You, Fixed point classes of a fiber map, Pacific J. Math. 100 (1982), 217-241.
Pages:
1-18
Main language of publication
English
Received
1996-02-26
Accepted
1996-11-13
Published
1998
Exact and natural sciences