ArticleOriginal scientific text
Title
Hamiltonian systems with linear potential and elastic constraints
Authors 1
Affiliations
- Department of Mathematics, University of Arizona, Tucson, Arizona 85 721, U.S.A.
Abstract
We consider a class of Hamiltonian systems with linear potential, elastic constraints and arbitrary number of degrees of freedom. We establish sufficient conditions for complete hyperbolicity of the system.
Bibliography
- [L-W] N. I. Chernov and C. Haskell, Nonuniformly hyperbolic K-systems are Bernoulli, Ergodic Theory Dynam. Systems 16 (1966), 19-44.
- [O-W] I. P. Cornfeld, S. V. Fomin and Ya. G. Sinai, Ergodic Theory, Springer, Berlin, 1982.
- [O] J. Cheng and M. P. Wojtkowski, Linear stability of a periodic orbit in the system of falling balls, in: The Geometry of Hamiltonian Systems (Berkeley, Calif., 1989), Math. Sci. Res. Inst. Publ. 22, Springer, 1991, 53-71.
- [KS] A. Katok and J.-M. Strelcyn (with the collaboration of F. Ledrappier and F. Przytycki), Invariant Manifolds, Entropy and Billiards; Smooth Maps with Singularities, Lecture Notes in Math. 1222, Springer, 1986.
- [L-M] H. E. Lehtihet and B. N. Miller, Numerical study of a billiard in a gravitational field, Phys. D 21 (1986), 93-104.
- [L-W] C. Liverani and M. P. Wojtkowski, Ergodicity in Hamiltonian systems, in: Dynamics Reported (N.S.) 4, Springer, 1995, 130-202.
- [O-W] D. Ornstein and B. Weiss, On the Bernoulli nature of systems with some hyperbolic structure, Ergodic Theory Dynam. Systems 18 (1998), 441-456.
- [O] V. I. Oseledets, A multiplicative ergodic theorem: characteristic Lyapunov exponents of dynamical systems, Trans. Moscow Math. Soc. 19 (1968), 197-231.
- [R-M] C. J. Reidl and B. N. Miller, Gravity in one dimension: The critical population, Phys. Rev. E 48 (1993), 4250-4256.
- [Ro] B. A. Rozenfel'd, Multidimensional Spaces, Nauka, Moscow, 1966 (in Russian).
- [R] D. Ruelle, Ergodic theory of differentiable dynamical systems, Publ. Math. IHES 50 (1979), 27-58.
- [S] N. Simányi, The characteristic exponents of the falling ball model, Comm. Math. Phys. 182 (1996), 457-468.
- [W1] M. P. Wojtkowski, A system of one dimensional balls with gravity, ibid. 126 (1990), 507-533.
- [W2] M. P. Wojtkowski, The system of one dimensional balls in an external field. II, ibid. 127 (1990), 425-432.
- [W3] M. P. Wojtkowski, Systems of classical interacting particles with nonvanishing Lyapunov exponents, in: Lyapunov Exponents (Oberwolfach, 1990), L. Arnold, H. Crauel and J.-P. Eckmann (eds.), Lecture Notes in Math. 1486, Springer, 1991, 243-262.