ArticleOriginal scientific text

Title

Ergodicity for piecewise smooth cocycles over toral rotations

Authors 1

Affiliations

  1. Institute of Mathematics, Wrocław University of Technology, Wybrzeże Wyspiańskiego 27, 50-370 Wrocław, Poland

Abstract

Let α be an ergodic rotation of the d-torus Td=dd. For any piecewise smooth function f:Td with sufficiently regular pieces the unitary operator Vh(x) = exp(2π if(x))h(x + α) acting on L2(Td) is shown to have a continuous non-Dirichlet spectrum if the gradient of f has nonzero integral. In particular, the resulting skew product Sf:Td+1Td+1 must be ergodic. If in addition α is sufficiently well approximated by rational vectors and f is represented by a linear function with noninteger coefficients then the spectrum of V is singular. In the case d = 1 our technique allows us to extend Pask's result on ergodicity of cylinder flows on T×ℝ to arbitrary piecewise absolutely continuous real-valued cocycles f satisfying ʃf = 0 and ʃf' ≠ 0.

Bibliography

  1. H. Anzai, Ergodic skew product transformations on the torus, Osaka J. Math. 3 (1951), 88-99.
  2. G. H. Choe, Products of operators with singular continuous spectra, in: Proc. Sympos. Pure Math. 51, Amer. Math. Soc., Providence, R.I., 1990, 65-68.
  3. H. Helson, Cocycles on the circle, J. Operator Theory 16 (1986), 189-199.
  4. M. Herman, Sur la conjugaison différentiable des difféomorphismes du cercle à des rotations, Inst. Hautes Études Sci. Publ. Math. 49 (1979), 5-234.
  5. H. Iwaniec, On a problem of Jacobsthal, Demonstratio Math. 11 (1978), 225-231.
  6. A. Iwanik, Anzai skew products with Lebesgue component of infinite multiplicity, Bull. London Math. Soc. 29 (1997), 195-199.
  7. A. Iwanik, M. Lemańczyk and C. Mauduit, Piecewise absolutely continuous cocycles over irrational rotations, J. London Math. Soc., to appear.
  8. A. Khintchine, Zur metrischen Theorie der diophantischen Approximationen, Math. Z. 24 (1926), 706-714.
  9. H. A. Medina, Spectral types of unitary operators arising from irrational rotations on the circle group, Michigan Math. J. 41 (1994), 39-49.
  10. D. A. Pask, Skew products over the irrational rotation, Israel J. Math. 69 (1990), 65-74.
Pages:
235-244
Main language of publication
English
Received
1997-09-30
Accepted
1997-12-22
Published
1998
Exact and natural sciences