ArticleOriginal scientific text
Title
Ergodicity for piecewise smooth cocycles over toral rotations
Authors 1
Affiliations
- Institute of Mathematics, Wrocław University of Technology, Wybrzeże Wyspiańskiego 27, 50-370 Wrocław, Poland
Abstract
Let α be an ergodic rotation of the d-torus . For any piecewise smooth function with sufficiently regular pieces the unitary operator Vh(x) = exp(2π if(x))h(x + α) acting on is shown to have a continuous non-Dirichlet spectrum if the gradient of f has nonzero integral. In particular, the resulting skew product must be ergodic. If in addition α is sufficiently well approximated by rational vectors and f is represented by a linear function with noninteger coefficients then the spectrum of V is singular. In the case d = 1 our technique allows us to extend Pask's result on ergodicity of cylinder flows on T×ℝ to arbitrary piecewise absolutely continuous real-valued cocycles f satisfying ʃf = 0 and ʃf' ≠ 0.
Bibliography
- H. Anzai, Ergodic skew product transformations on the torus, Osaka J. Math. 3 (1951), 88-99.
- G. H. Choe, Products of operators with singular continuous spectra, in: Proc. Sympos. Pure Math. 51, Amer. Math. Soc., Providence, R.I., 1990, 65-68.
- H. Helson, Cocycles on the circle, J. Operator Theory 16 (1986), 189-199.
- M. Herman, Sur la conjugaison différentiable des difféomorphismes du cercle à des rotations, Inst. Hautes Études Sci. Publ. Math. 49 (1979), 5-234.
- H. Iwaniec, On a problem of Jacobsthal, Demonstratio Math. 11 (1978), 225-231.
- A. Iwanik, Anzai skew products with Lebesgue component of infinite multiplicity, Bull. London Math. Soc. 29 (1997), 195-199.
- A. Iwanik, M. Lemańczyk and C. Mauduit, Piecewise absolutely continuous cocycles over irrational rotations, J. London Math. Soc., to appear.
- A. Khintchine, Zur metrischen Theorie der diophantischen Approximationen, Math. Z. 24 (1926), 706-714.
- H. A. Medina, Spectral types of unitary operators arising from irrational rotations on the circle group, Michigan Math. J. 41 (1994), 39-49.
- D. A. Pask, Skew products over the irrational rotation, Israel J. Math. 69 (1990), 65-74.