ArticleOriginal scientific text
Title
Density of periodic orbit measures for transformations on the interval with two monotonic pieces
Authors 1, 1
Affiliations
- Institut für Mathematik, Universität Wien, Strudlhofgasse 4, A-1090 Wien, Austria
Abstract
Transformations T:[0,1] → [0,1] with two monotonic pieces are considered. Under the assumption that T is topologically transitive and , it is proved that the invariant measures concentrated on periodic orbits are dense in the set of all invariant probability measures.
Keywords
piecewise monotonic map, invariant measure, periodic orbit measure, Markov diagram
Bibliography
- A. Blokh, The `spectral' decomposition for one-dimensional maps, in: Dynam. Report. 4, C. K. R. T. Jones, V. Kirchgraber and H.-O. Walther (eds.), Springer, Berlin, 1995, 1-59.
- R. Bowen, Periodic points and measures for axiom-A-diffeomorphisms, Trans. Amer. Math. Soc. 154 (1971), 377-397.
- M. Denker, C. Grillenberger and K. Sigmund, Ergodic Theory on Compact Spaces, Lecture Notes in Math. 527, Springer, Berlin, 1976.
- F. Hofbauer, Piecewise invertible dynamical systems, Probab. Theory Related Fields 72 (1986), 359-386.
- F. Hofbauer, Generic properties of invariant measures for simple piecewise monotonic transformations, Israel J. Math. 59 (1987), 64-80.
- F. Hofbauer, Hausdorff dimension and pressure for piecewise monotonic maps of the interval, J. London Math. Soc. 47 (1993), 142-156.
- F. Hofbauer, Local dimension for piecewise monotonic maps on the interval, Ergodic Theory Dynam. Systems 15 (1995), 1119-1142.
- F. Hofbauer and M. Urba/nski, Fractal properties of invariant subsets for piecewise monotonic maps of the interval, Trans. Amer. Math. Soc. 343 (1994), 659-673.
- P. Raith, Continuity of the Hausdorff dimension for piecewise monotonic maps, Israel J. Math. 80 (1992), 97-133.
- P. Walters, An Introduction to Ergodic Theory, Grad. Texts in Math. 79, Springer, New York, 1982.