ArticleOriginal scientific text

Title

Conformal measures for rational functions revisited

Authors 1, 2, 3, 2

Affiliations

  1. Institut für Math. Stochastik, Lotzestr. 13, 37083 Göttingen, Germany
  2. Department of Mathematics, University of North Texas, Denton, Texas 76203, U.S.A.
  3. Department of Mathematics, Tufts University Medford, Massachusetts 02155, U.S.A.

Abstract

We show that the set of conical points of a rational function of the Riemann sphere supports at most one conformal measure. We then study the problem of existence of such measures and their ergodic properties by constructing Markov partitions on increasing subsets of sets of conical points and by applying ideas of the thermodynamic formalism.

Bibliography

  1. [ADU] J. Aaronson, M. Denker and M. Urbański, Ergodic theory for Markov fibred systems and parabolic rational maps, Trans. Amer. Math. Soc. 337 (1993), 495-548.
  2. [BMO] A. M. Blokh, J. C. Mayer and L. G. Oversteegen, Limit sets and conformal measures, preprint, 1998.
  3. [DNU] M. Denker, Z. Nitecki and M. Urbański, Conformal measures and S-unimodal maps, in: Dynamical Systems and Applications, World Sci. Ser. Appl. Anal. 4, World Sci., 1995, 169-212.
  4. [DU] M. Denker and M. Urbański, Ergodic theory of equilibrium states for rational maps, Nonlinearity 4 (1991), 103-134.
  5. [DU1] M. Denker and M. Urbański, On Sullivan's conformal measures for rational maps of the Riemann sphere, ibid. 4 (1991), 365-384.
  6. [DU2] M. Denker and M. Urbański, On absolutely continuous invariant measures for expansive rational maps with rationally indifferent periodic points, Forum Math. 3 (1991), 561-579.
  7. [DU3] M. Denker and M. Urbański, Geometric measures for parabolic rational maps, Ergodic Theory Dynam. Systems 12 (1992), 53-66.
  8. [LM] M. Lyubich and Y. Minsky, Laminations in holomorphic dynamics, J. Differential Geom. 47 (1997), 17-94.
  9. [Ma] R. Ma né, On the Bernoulli property of rational maps, Ergodic Theory Dynam. Systems 5 (1985), 71-88.
  10. [MU] R. D. Mauldin and M. Urbański, Dimensions and measures in infinite iterated function systems, Proc. London Math. Soc. 73 (1996), 105-154.
  11. [MM] C. T. McMullen, Hausdorff dimension and conformal dynamics II: Geometrically finite rational maps, preprint, Stony Brook, 1997.
  12. [Pr1] F. Przytycki, Lyapunov characteristic exponents are nonnegative, Proc. Amer. Math. Soc. 119 (1993), 309-317.
  13. [Pr2] F. Przytycki, Iterations of holomorphic Collet-Eckmann maps: Conformal and invariant measures. Appendix: On non-renormalizable quadratic polynomials, Trans. Amer. Math. Soc. 350 (1998), 717-742.
  14. [Pr3] F. Przytycki, On measure and Hausdorff dimension of Julia sets for holomorphic Collet-Eckmann maps, in: Dynamical Systems (Montevideo, 1995), Pitman Res. Notes Math. 362, Longman, 1996, 167-181.
  15. [Pr4] F. Przytycki, Conical limit set and Poincaré exponent for iterations of rational functions, preprint, 1997
  16. [PU] F. Przytycki and M. Urbański, Fractal sets in the plane - ergodic theory methods, to appear.
  17. [Sh] M. Shishikura, The Hausdorff dimension of the boundary of the Mandelbrot set and Julia sets, preprint, 1991.
  18. [U1] M. Urbański, Rational functions with no recurrent critical points, Ergodic Theory Dynam. Systems 14 (1994), 391-414.
  19. [U2] M. Urbański, On some aspects of fractal dimensions in higher dimensional dynamics, preprint, 1995.
  20. [U3] M. Urbański, Geometry and ergodic theory of conformal nonrecurrent dynamics, Ergodic Theory Dynam. Systems 17 (1997), 1449-1476.
Pages:
161-173
Main language of publication
English
Received
1997-08-28
Accepted
1998-03-15
Published
1998
Exact and natural sciences