ArticleOriginal scientific text

Title

Jordan tori and polynomial endomorphisms in 2

Authors 1, 1

Affiliations

  1. Institut für Mathematische Stochastik, Georg-August-Universität Göttingen, Lotzestraße 13, D-37083 Göttingen, Germany

Abstract

For a class of quadratic polynomial endomorphisms f:22 close to the standard torus map (x,y)(x2,y2), we show that the Julia set J(f) is homeomorphic to the torus. We identify J(f) as the closure ℛ of the set of repelling periodic points and as the Shilov boundary of the set K(f) of points with bounded forward orbit. Moreover, it turns out that (J(f),f) is a mixing repeller and supports a measure of maximal entropy for f which is uniquely determined as the harmonic measure for K(f).

Bibliography

  1. J. Aaronson, M. Denker, and M. Urbański, Ergodic theory of Markov fibred systems and parabolic rational maps, Trans. Amer. Math. Soc. 337 (1993), 495-548.
  2. A. F. Beardon, Iteration of Rational Functions, Grad. Texts in Math. 132, Springer, 1991.
  3. E. Bedford and J. Smillie, Polynomial diffeomorphisms of 2: currents, equilibrium measure and hyperbolicity, Invent. Math. 103 (1991), 69-99.
  4. H. Brolin, Invariant sets under iteration of rational functions, Ark. Mat. 6 (1965), 103-144.
  5. J. E. Fornæss and N. Sibony, Complex dynamics in higher dimension. I, Astérisque 222 (1994), 201-231.
  6. O. Forster, Riemannsche Flächen, Heidelberger Taschenbücher 184, Springer, 1977.
  7. B. A. Fuks, Special Chapters in the Theory of Analytic Functions of Several Variables, Transl. Math. Monographs 14, Amer. Math. Soc., 1991.
  8. I. R. Gelfand, D. A. Raikow und G. E. Schilow, Kommutative normierte Algebren, Deutscher Verlag der Wiss., 1964.
  9. H. Grauert und K. Fritzsche, Einführung in die Funktionentheorie mehrerer Veränderlicher, Hochschultext, Springer, 1974.
  10. H. Grauert and R. Remmert, Coherent Analytic Sheaves, Springer, 1984.
  11. M. Gromov, On the entropy of holomorphic mappings, preprint, Inst. Hautes Etudes Sci.
  12. P. Hartman, Ordinary Differential Equations, Birkhäuser, 1982.
  13. S. M. Heinemann, Iteration holomorpher Abbildungen in n, Diplomarbeit Universität Göttingen, 1993.
  14. S. M. Heinemann, Dynamische Aspekte holomorpher Abbildungen in n, Dissertation, Universität Göttingen, 1994.
  15. S. M. Heinemann, Julia sets for endomorphisms of n, Ergodic Theory Dynam. Systems 16 (1996), 1275-1296.
  16. K. Knopp, Elemente der Funktionentheorie, Sammlung Göschen 2124, de Gruyter, 1978.
  17. K. Krzyżewski and W. Szlenk, On invariant measures for expanding differentiable mappings, Studia Math. 33 (1969), 83-92.
  18. S. Lang, Introduction to Complex Hyperbolic Spaces, Springer, 1987.
  19. R. Remmert, Funktionentheorie I, Grundwissen Math. 5, Springer, 1984.
  20. G. Scheja und U. Storch, Lehrbuch der Algebra 2, Mathematische Leitfäden, Teubner, 1988.
  21. F. Schweiger, Numbertheoretical endomorphisms with σ-finite invariant measure, Israel J. Math. 21 (1975), 308-318.
  22. I. R. Shafarevich, Basic Algebraic Geometry, Springer, 1974.
Pages:
139-159
Main language of publication
English
Received
1997-10-22
Accepted
1998-04-14
Published
1998
Exact and natural sciences