ArticleOriginal scientific text

Title

All solenoids of piecewise smooth maps are period doubling

Authors 1, 2, 3

Affiliations

  1. Departament de Matemàtiques, Universitat Autònoma de Barcelona, 08193 Bellaterra, Barcelona, Spain
  2. Departamento de Matemáticas, Universidad de Murcia, Campus de Espinardo, Aptdo. de Correos 4021, 30100 Murcia, Spain
  3. Department of Mathematics, Faculty of Natural Sciences, Matej Bel University, Tajovského 40, 974 01 Banská Bystrica, Slovakia

Abstract

We show that piecewise smooth maps with a finite number of pieces of monotonicity and nowhere vanishing Lipschitz continuous derivative can have only period doubling solenoids. The proof is based on the fact that if p1<...<pn is a periodic orbit of a continuous map f then there is a union set {q1,...,qn-1} of some periodic orbits of f such that pi<qi<pi+1 for any i.

Keywords

Markov graph, periodic point, piecewise smooth map with nowhere vanishing Lipschitz continuous derivative, piecewise linear map, solenoid

Bibliography

  1. L. Alsedà, J. Llibre and M. Misiurewicz, Combinatorial Dynamics and Entropy in Dimension One, Adv. Ser. in Nonlinear Dynam. 5, World Sci., Singapore, 1993.
  2. A. M. Blokh and M. Yu. Lyubich, Measure and dimension of solenoidal attractors of one dimensional dynamical systems, Comm. Math. Phys. 127 (1990), 573-583.
  3. J. Bobok and M. Kuchta, Register shifts versus transitive F-cycles for piecewise monotone maps, Real Anal. Exchange 21 (1995/96), 134-146.
  4. R. Galeeva and S. van Strien, Which families of l-modal maps are full?, Trans. Amer. Math. Soc. 348 (1996), 3215-3221.
  5. V. Jiménez López and L'. Snoha, There are no piecewise linear maps of type 2, ibid. 349 (1997), 1377-1387.
  6. S. F. Kolyada, Interval maps with zero Schwarzian, in: Functional-Differential Equations and Their Applications, Inst. Math. Ukrain. Acad. Sci., Kiev, 1985, 47-57 (in Russian).
  7. L. Lovász and M. D. Plummer, Matching Theory, Akadémiai Kiadó, Budapest, 1986.
  8. M. Martens, W. de Melo and S. van Strien, Julia-Fatou-Sullivan theory for real one-dimensional dynamics, Acta Math. 168 (1992), 271-318.
  9. M. Martens and C. Tresser, Forcing of periodic orbits for interval maps and renormalization of piecewise affine maps, Proc. Amer. Math. Soc. 124 (1996), 2863-2870.
  10. W. de Melo and S. van Strien, One-Dimensional Dynamics, Springer, Berlin, 1993.
  11. M. Misiurewicz, Attracting Cantor set of positive measure for a C map of an interval, Ergodic Theory Dynam. Systems 2 (1982), 405-415.
  12. C. Preston, Iterates of Piecewise Monotone Mappings on an Interval, Lecture Notes in Math. 1347, Springer, Berlin, 1988.
Pages:
121-138
Main language of publication
English
Received
1997-08-13
Accepted
1998-02-07
Published
1998
Exact and natural sciences