ArticleOriginal scientific text
Title
All solenoids of piecewise smooth maps are period doubling
Authors 1, 2, 3
Affiliations
- Departament de Matemàtiques, Universitat Autònoma de Barcelona, 08193 Bellaterra, Barcelona, Spain
- Departamento de Matemáticas, Universidad de Murcia, Campus de Espinardo, Aptdo. de Correos 4021, 30100 Murcia, Spain
- Department of Mathematics, Faculty of Natural Sciences, Matej Bel University, Tajovského 40, 974 01 Banská Bystrica, Slovakia
Abstract
We show that piecewise smooth maps with a finite number of pieces of monotonicity and nowhere vanishing Lipschitz continuous derivative can have only period doubling solenoids. The proof is based on the fact that if is a periodic orbit of a continuous map f then there is a union set of some periodic orbits of f such that for any i.
Keywords
Markov graph, periodic point, piecewise smooth map with nowhere vanishing Lipschitz continuous derivative, piecewise linear map, solenoid
Bibliography
- L. Alsedà, J. Llibre and M. Misiurewicz, Combinatorial Dynamics and Entropy in Dimension One, Adv. Ser. in Nonlinear Dynam. 5, World Sci., Singapore, 1993.
- A. M. Blokh and M. Yu. Lyubich, Measure and dimension of solenoidal attractors of one dimensional dynamical systems, Comm. Math. Phys. 127 (1990), 573-583.
- J. Bobok and M. Kuchta, Register shifts versus transitive F-cycles for piecewise monotone maps, Real Anal. Exchange 21 (1995/96), 134-146.
- R. Galeeva and S. van Strien, Which families of l-modal maps are full?, Trans. Amer. Math. Soc. 348 (1996), 3215-3221.
- V. Jiménez López and L'. Snoha, There are no piecewise linear maps of type
, ibid. 349 (1997), 1377-1387. - S. F. Kolyada, Interval maps with zero Schwarzian, in: Functional-Differential Equations and Their Applications, Inst. Math. Ukrain. Acad. Sci., Kiev, 1985, 47-57 (in Russian).
- L. Lovász and M. D. Plummer, Matching Theory, Akadémiai Kiadó, Budapest, 1986.
- M. Martens, W. de Melo and S. van Strien, Julia-Fatou-Sullivan theory for real one-dimensional dynamics, Acta Math. 168 (1992), 271-318.
- M. Martens and C. Tresser, Forcing of periodic orbits for interval maps and renormalization of piecewise affine maps, Proc. Amer. Math. Soc. 124 (1996), 2863-2870.
- W. de Melo and S. van Strien, One-Dimensional Dynamics, Springer, Berlin, 1993.
- M. Misiurewicz, Attracting Cantor set of positive measure for a
map of an interval, Ergodic Theory Dynam. Systems 2 (1982), 405-415. - C. Preston, Iterates of Piecewise Monotone Mappings on an Interval, Lecture Notes in Math. 1347, Springer, Berlin, 1988.