ArticleOriginal scientific text
Title
Hausdorff measures and two point set extensions
Authors 1, 2, 3
Affiliations
- Department of Mathematics, The University of Alabama, Box 870350, Tuscaloosa, Alabama 35487-0350, U.S.A.
- Faculteit Wiskunde en Informatica, Vrije Universiteit, De Boelelaan 1081a, 1081 HV Amsterdam, The Netherlands
- Department of Mathematics, University of Wisconsin, Madison, Wisconsin 53706, U.S.A.
Abstract
We investigate the following question: under which conditions is a σ-compact partial two point set contained in a two point set? We show that no reasonable measure or capacity (when applied to the set itself) can provide a sufficient condition for a compact partial two point set to be extendable to a two point set. On the other hand, we prove that under Martin's Axiom any σ-compact partial two point set such that its square has Hausdorff 1-measure zero is extendable.
Bibliography
- J. J. Dijkstra, Generic partial two-point sets are extendable, Canad. Math. Bull., to appear.
- J. J. Dijkstra and J. van Mill, Two point set extensions - a counterexample, Proc. Amer. Math. Soc. 125 (1997), 2501-2502.
- J. Kulesza, A two-point set must be zero-dimensional, ibid. 116 (1992), 551-553.
- N. S. Landkof, Foundations of Modern Potential Theory, Grundlehren Math. Wiss. 180, Springer, Berlin, 1972.
- S. Lang, Algebra, 3rd ed., Addison-Wesley, Reading, 1993.
- R. D. Mauldin, Problems in topology arising from analysis, in: Open Problems in Topology, J. van Mill and G. M. Reed (eds.), North-Holland, Amsterdam, 1990, 617-629.
- R. D. Mauldin, On sets which meet each line in exactly two points, Bull. London Math. Soc., to appear.
- S. Mazurkiewicz, O pewnej mnogości płaskiej, która ma każdą prostą dwa i tylko dwa punkty wspólne, C. R. Varsovie 7 (1914), 382-384 (in Polish); French transl.: Sur un ensemble plan qui a avec chaque droite deux et seulement deux points communs, in: Stefan Mazurkiewicz, Traveaux de Topologie et ses Applications, PWN, Warszawa, 1969, 46-47.
- J. van Mill and G. M. Reed, Open problems in topology, Topology Appl. 62 (1995), 93-99.
- M. E. Rudin, Martin's Axiom, in: Handbook of Mathematical Logic, North-Holland, Amsterdam, 1977, 491-501.
- W. Rudin, Real and Complex Analysis, 3rd ed., McGraw-Hill, New York, 1987.
- M. Tsuji, Potential Theory in Modern Function Theory, Maruzen, Tokyo, 1959.