ArticleOriginal scientific text
Title
Endomorphism algebras over large domains
Authors 1, 2
Affiliations
- achbereich 6, Universität Essen, 45117 Essen, Germany
- Dublin Institute of Technology, 30 Upper Pembroke Street, Dublin 2, Ireland
Abstract
The paper deals with realizations of R-algebras A as endomorphism algebras End G ≅ A of suitable R-modules G over a commutative ring R. We are mainly interested in the case of R having "many prime ideals", such as R = ℝ[x], the ring of real polynomials, or R a non-discrete valuation domain
Bibliography
- C. Böttinger and R.Göbel, Modules with two distinguished submodules, in: Proc. 1991 Curaçao Conf. Abelian Groups, Lecture Notes in Pure and Appl. Math. 146, Marcel Dekker, New York, 1993, 97-104.
- C. C. Chang and H. J. Keisler, Model Theory, Stud. Logic Found. Math. 73, North-Holland, 1990.
- A. L. S. Corner and R. Göbel, Prescribing endomorphism algebras - A unified treatment, Proc. London Math. Soc. (3) 50 (1985), 447-479.
- M. Dugas and R. Göbel, Every cotorsion-free algebra is an endomorphism algebra, Math. Z. 181 (1982), 451-470.
- P. C. Eklof and A. H. Mekler, Almost Free Modules, North-Holland, 1990.
- L. Fuchs and L. Salce, Modules over Valuation Domains, Lecture Notes in Pure and Appl. Math. 97, Marcel Dekker, New York, 1985.
- R. Göbel and W. May, Independence in completions and endomorphism algebras, Forum Math. 1 (1989), 215-226.
- R. Göbel and S. Shelah, Modules over arbitrary domains II, Fund. Math. 126 (1986), 217-243.
- S. Pabst, Kaplansky's Testprobleme in der Modultheorie über kommutativen Ringen, Dissertation, Universität/GHS Essen, 1994.
- M. Prest, Model Theory and Modules, London Math. Soc. Lecture Note Ser. 130, Cambridge Univ. Press, 1988.
- R. B. Warfield, Purity and algebraic compactness for modules, Pacific J. Math. 28 (1969), 699-719.
- M. Ziegler, Model theory of modules, Ann. Pure Appl. Logic 26 (1984), 149-213.