ArticleOriginal scientific text

Title

On Pettis integral and Radon measures

Authors 1

Affiliations

  1. Institute of Mathematics, Polish Academy of Sciences, Kopernika 18, 51-617 Wrocław, Poland

Abstract

Assuming the continuum hypothesis, we construct a universally weakly measurable function from [0,1] into a dual of some weakly compactly generated Banach space, which is not Pettis integrable. This (partially) solves a problem posed by Riddle, Saab and Uhl [13]. We prove two results related to Pettis integration in dual Banach spaces. We also contribute to the problem whether it is consistent that every bounded function which is weakly measurable with respect to some Radon measure is Pettis integrable.

Bibliography

  1. K. T. Andrews, Universal Pettis integrability, Canad. J. Math. 37 (1985), 141-159.
  2. G. A. Edgar, Measurability in a Banach space II, Indiana Univ. Math. J. 28 (1979), 559-579.
  3. R. Frankiewicz and G. Plebanek, On nonaccessible filters in measure algebras and functionals on L(λ), Studia Math. 108 (1994), 191-200.
  4. D. H. Fremlin, Measure-additive coverings and measurable selectors, Dissertationes Math. 260 (1987).
  5. D. H. Fremlin, Measure algebras, in: Handbook of Boolean Algebras, J. D. Monk (ed.), North-Holand, 1989, Vol. III, Chap. 22.
  6. D. H. Fremlin, Real-valued measurable cardinals, in: Israel Math. Conf. Proc. 6, 1993, 961-1044.
  7. K. Kunen, Some points in βN, Math. Proc. Cambridge Philos. Soc. 80 (1975), 385-398.
  8. K. Kunen, Set Theory, Stud. Logic 102, North-Holland, 1980.
  9. K. Musiał, Topics in the theory of Pettis integration, Rend. Inst. Mat. Univ. Trieste 23 (1991), 177-262.
  10. S. Negrepontis, Banach spaces and topology, in: Handbook of Set-Theoretic Topology, K. Kunen and J. Vaughan (eds.), North-Holland, 1984, 1045-1142.
  11. G. Plebanek, On Pettis integrals with separable range, Colloq. Math. 64 (1993), 71-78.
  12. L. H. Riddle and E. Saab, On functions that are universally Pettis integrable, Illinois J. Math. 29 (1985), 509-531.
  13. L. H. Riddle, E. Saab and J. J. Uhl, Sets with the weak Radon-Nikodym property in dual Banach spaces, Indiana Univ. Math. J. 32 (1983), 527-541.
  14. G. F. Stefansson, Universal Pettis integrability, Proc. Amer. Math. Soc. 125 (1993), 1431-1435.
  15. M. Talagrand, Pettis integral and measure theory, Mem. Amer. Math. Soc. 51 (1984).
  16. G. Vera, Pointwise compactness and continuity of the integral, Rev. Mat. (1996) (numero supl.), 221-245.
Pages:
183-195
Main language of publication
English
Received
1997-06-24
Accepted
1997-09-22
Published
1998
Exact and natural sciences