ArticleOriginal scientific text
Title
Definability within structures related to Pascal’s triangle modulo an integer
Authors 1, 2
Affiliations
- Université Paris 7, Equipe de Logique URA 753, 2, place Jussieu, 75251 Paris Cedex 05, France
- Mathematical Institute, Slovak Academy of Sciences, Štefánikova 49, 81473 Bratislava, Slovakia
Abstract
Let Sq denote the set of squares, and let be the squaring function restricted to powers of n; let ⊥ denote the coprimeness relation. Let . For every integer n ≥ 2 addition and multiplication are definable in the structures ⟨ℕ; B_n,⊥⟩ and ⟨ℕ; B_n,Sq⟩; thus their elementary theories are undecidable. On the other hand, for every prime p the elementary theory of ⟨ℕ; B_p,SQ_p⟩ is decidable.
Keywords
Pascal's triangle modulo n, decidability, definability
Bibliography
- [BJW] P. T. Bateman, C. G. Jockusch and, A. R. Woods, Decidability and undecidability with a predicate for the primes, J. Symbolic Logic 58 (1993), 672-687.
- [Be] A. Bès, On Pascal triangles modulo a prime power, Ann. Pure Appl. Logic 89 (1997), 17-35.
- [Bo] B. A. Bondarenko, Generalized Pascal Triangles and Pyramids, their Fractals, Graphs and Applications, "Fan", Tashkent, 1990 (in Russian).
- [BHMV] V. Bruyère, G. Hansel, C. Michaux and R. Villemaire, Logic and p-recognizable sets of integers, Bull. Belg. Math. Soc. Simon Stevin 1 (1994), 191-238.
- [Ce] P. Cegielski, Definability, decidability, complexity, Ann. Math. Artificial Intelligence 16 (1996), 311-342.
- [Di] L. E. Dickson, History of the Theory of Numbers, Vol. I, Chelsea, New York, 1952, Ch. IX.
- [El] W. and F. Ellison, Prime Numbers, Hermann, Paris, 1985.
- [FV] S. Feferman and R. L. Vaught, The first order properties of products of algebraic systems, Fund. Math. 47 (1959), 57-103.
- [Fi] N. J. Fine, Binomial coefficients modulo a prime, Amer. Math. Monthly 54 (1947), 589-592.
- [Ko1] I. Korec, Definability of arithmetic operations in Pascal triangle modulo an integer divisible by two primes, Grazer Math. Ber. 318 (1993), 53-62.
- [Ko2] I. Korec, Structures related to Pascal's triangle modulo 2 and their elementary theories, Math. Slovaca 44 (1994), 531-554.
- [Ko3] I. Korec, Elementary theories of structures containing generalized Pascal triangles modulo a prime, in: Proc. 5th Conf. on Discrete Mathematics and Applications (Blagoevgrad/Predel, 1994), S. Shtrakov and I. Mirchev (eds.), Blagoevgrad, 1995, 91-102.
- [Lu] E. Lucas, Sur les congruences des nombres eulériens et des coefficients différentiels des fonctions trigonométriques, suivant un module premier, Bull. Soc. Math. France 6 (1878), 49-54.
- [MMT] R. McKenzie, J. Mycielski and D. Thompson, On boolean functions and connected sets, Math. Systems Theory 5 (1971), 259-270.
- [Pu] H. Putnam, Decidability and essential undecidability, J. Symbolic Logic 22 (1957), 39-54.
- [Ri] D. Richard, All arithmetical sets of powers of primes are first-order definable in terms of the successor function and the coprimeness predicate, Discrete Math. 53 (1985), 221-247.
- [Ro] J. Robinson, Definability and decision problems in arithmetic, J. Symbolic Logic 14 (1949), 98-114.
- [Si] D. Singmaster, Notes on binomial coefficients III - Any integer divides almost all binomial coefficients, J. London Math. Soc. (2) 8 (1974), 555-560.
- [Th] W. Thomas, A note on undecidable extensions of monadic second order successor arithmetic, Arch. Math. Logik Grundlagenforsch. 17 (1975), 43-44.
- [Vi] R. Villemaire, Joining k- and l-recognizable sets of natural numbers, in: Proc. 9th Sympos. Theoretical Aspects of Computer Science STACS'92 (Paris), Lecture Notes in Comput. Sci. 577, Springer, 1992, 83-94.
- [Wo] A. R. Woods, Some problems in logic and number theory and their connections, thesis, University of Manchester, 1981.