ArticleOriginal scientific text

Title

Gaps in analytic quotients

Authors 1, 2, 3

Affiliations

  1. Department of Mathematics, University of Toronto, Toronto, Ontario, Canada M5S 3G3
  2. Matematicki Institut, Kneza Mihaila 35, 11000 Beograd, Yugoslavia
  3. Centre de Recerca Matematica, Institut D'Estudias Catalans, Apartat 50, E-08193 Bellaterra, Catalonia, Spain

Abstract

We prove that the quotient algebra P(ℕ)/I over any analytic ideal I on ℕ contains a Hausdorff gap.

Bibliography

  1. H. G. Dales and W. H. Woodin, An Introduction to Independence for Analysts, Cambridge Univ. Press, 1987.
  2. I. Farah, Embedding partially ordered sets into ^ωω, Fund. Math. 151 (1996), 53-95.
  3. I. Farah, Analytic ideals and their quotients, Ph.D. thesis, Univ. of Toronto, 1997.
  4. F. Hausdorff, Die Graduierung nach dem Endverlauf, Abh. König. Sächs. Ges. Wiss. Math.-Phys. Kl. 31 (1909), 296-334.
  5. F. Hausdorff, Summen von 1 Mengen, Fund. Math. 26 (1936), 241-255.
  6. S.-A. Jalali-Naini, The monotone subsets of Cantor space, filters and descriptive set theory, doctoral dissertation, Oxford, 1976.
  7. W. Just, The space (ω)n+1 is not always a continuous image of (ω)n, Fund. Math. 132 (1989), 59-72.
  8. W. Just, Nowhere dense P-subsets of ω*, Proc. Amer. Math. Soc. 106 (1989), 1145-1146.
  9. W. Just, A modification of Shelah's oracle chain condition with applications, Trans. Amer. Math. Soc. 329 (1992), 325-341.
  10. W. Just, A weak version of AT from OCA, in: Math. Sci. Res. Inst. Publ. 26, Springer, 1992, 281-291.
  11. W. Just and A. Krawczyk, On certain Boolean algebras P(ω)/I, Trans. Amer. Math. Soc. 285 (1984), 411-429.
  12. A. S. Kechris, Lectures on definable group actions and equivalence relations, in preparation.
  13. A. S. Kechris and A. Louveau, The classification of hypersmooth Borel equivalence relations, J. Amer. Math. Soc. 10 (1997), 215-242.
  14. K. Kunen, (κ,λ*) gaps under MA, note of August 1976.
  15. A. R. D. Mathias, A remark on rare filters, in: Infinite and Finite Sets, A. Hajnal et al. (ed.), Colloq. Math. Soc. János Bolyai 10, North-Holland, 1975, 1095-1097.
  16. K. Mazur, Fσ-ideals and ω1ω1-gaps in the Boolean algebra CP(ω)/I, Fund. Math. 138 (1991), 103-111.
  17. M. Scheepers, Gaps in ωω, in: Israel Math. Conf. Proc. 6, Bar-Ilan Univ., 1993, 439-561.
  18. S. Shelah, Proper Forcing, Lecture Notes in Math. 940, Springer, 1982.
  19. S. Solecki, Analytic ideals, Bull. Symbolic Logic 2 (1996), 339-348.
  20. M. Talagrand, Compacts de fonctions mesurables et filtres non mesurables, Studia Math. 67 (1980), 13-43.
  21. S. Todorčević, Partition Problems in Topology, Amer. Math. Soc., Providence, 1989.
  22. S. Todorčević, Analytic gaps, Fund. Math. 150 (1996), 55-66.
  23. B. Veličković, Definable automorphisms of P(ω) /fin, Proc. Amer. Math. Soc. 96 (1986), 130-135.
  24. B. Veličković, OCA and automorphisms of CP(ω)/fin, Topology Appl. 49 (1992), 1-12.
Pages:
85-97
Main language of publication
English
Received
1997-08-21
Published
1998
Exact and natural sciences