Download PDF - Gaps in analytic quotients
ArticleOriginal scientific text
Title
Gaps in analytic quotients
Authors 1, 2, 3
Affiliations
- Department of Mathematics, University of Toronto, Toronto, Ontario, Canada M5S 3G3
- Matematicki Institut, Kneza Mihaila 35, 11000 Beograd, Yugoslavia
- Centre de Recerca Matematica, Institut D'Estudias Catalans, Apartat 50, E-08193 Bellaterra, Catalonia, Spain
Abstract
We prove that the quotient algebra P(ℕ)/I over any analytic ideal I on ℕ contains a Hausdorff gap.
Bibliography
- H. G. Dales and W. H. Woodin, An Introduction to Independence for Analysts, Cambridge Univ. Press, 1987.
- I. Farah, Embedding partially ordered sets into
, Fund. Math. 151 (1996), 53-95. - I. Farah, Analytic ideals and their quotients, Ph.D. thesis, Univ. of Toronto, 1997.
- F. Hausdorff, Die Graduierung nach dem Endverlauf, Abh. König. Sächs. Ges. Wiss. Math.-Phys. Kl. 31 (1909), 296-334.
- F. Hausdorff, Summen von
Mengen, Fund. Math. 26 (1936), 241-255. - S.-A. Jalali-Naini, The monotone subsets of Cantor space, filters and descriptive set theory, doctoral dissertation, Oxford, 1976.
- W. Just, The space
is not always a continuous image of , Fund. Math. 132 (1989), 59-72. - W. Just, Nowhere dense P-subsets of ω*, Proc. Amer. Math. Soc. 106 (1989), 1145-1146.
- W. Just, A modification of Shelah's oracle chain condition with applications, Trans. Amer. Math. Soc. 329 (1992), 325-341.
- W. Just, A weak version of AT from OCA, in: Math. Sci. Res. Inst. Publ. 26, Springer, 1992, 281-291.
- W. Just and A. Krawczyk, On certain Boolean algebras P(ω)/I, Trans. Amer. Math. Soc. 285 (1984), 411-429.
- A. S. Kechris, Lectures on definable group actions and equivalence relations, in preparation.
- A. S. Kechris and A. Louveau, The classification of hypersmooth Borel equivalence relations, J. Amer. Math. Soc. 10 (1997), 215-242.
- K. Kunen, (κ,λ*) gaps under MA, note of August 1976.
- A. R. D. Mathias, A remark on rare filters, in: Infinite and Finite Sets, A. Hajnal et al. (ed.), Colloq. Math. Soc. János Bolyai 10, North-Holland, 1975, 1095-1097.
- K. Mazur,
-ideals and -gaps in the Boolean algebra CP(ω)/I, Fund. Math. 138 (1991), 103-111. - M. Scheepers, Gaps in
, in: Israel Math. Conf. Proc. 6, Bar-Ilan Univ., 1993, 439-561. - S. Shelah, Proper Forcing, Lecture Notes in Math. 940, Springer, 1982.
- S. Solecki, Analytic ideals, Bull. Symbolic Logic 2 (1996), 339-348.
- M. Talagrand, Compacts de fonctions mesurables et filtres non mesurables, Studia Math. 67 (1980), 13-43.
- S. Todorčević, Partition Problems in Topology, Amer. Math. Soc., Providence, 1989.
- S. Todorčević, Analytic gaps, Fund. Math. 150 (1996), 55-66.
- B. Veličković, Definable automorphisms of P(ω) /fin, Proc. Amer. Math. Soc. 96 (1986), 130-135.
- B. Veličković, OCA and automorphisms of CP(ω)/fin, Topology Appl. 49 (1992), 1-12.