ArticleOriginal scientific text

Title

X-minimal patterns and a generalization of Sharkovskiĭ's theorem

Authors 1, 2

Affiliations

  1. KM FSv. ČVUT, Thákurova 7, 166 29 Praha 6, Czech Republic
  2. athematical Institute, Slovak Academy of Sciences, Štefánikova 49, 814 73 Bratislava, Slovak Republic

Abstract

We study the law of coexistence of different types of cycles for a continuous map of the interval. For this we introduce the notion of eccentricity of a pattern and characterize those patterns with a given eccentricity that are simplest from the point of view of the forcing relation. We call these patterns X-minimal. We obtain a generalization of Sharkovskiĭ's Theorem where the notion of period is replaced by the notion of eccentricity.

Keywords

iteration, periodic orbit, cycle, pattern, minimal, forcing relation, Sharkovskiĭ s theorem

Bibliography

  1. [ALM] L. Alsedà, J. Llibre and M. Misiurewicz, Combinatorial Dynamics and Entropy in Dimension One, Adv. Ser. Nonlinear Dynam. 5, World Sci., Singapore, 1993.
  2. [ALS] L. Alsedà, J. Llibre and R. Serra, Mimimal periodic orbits for continuous maps of the interval, Trans. Amer. Math. Soc. 286 (1984), 595-627.
  3. [B] S. Baldwin, Generalizations of a theorem of Sharkovskii on orbits of continuous real-valued functions, Discrete Math. 67 (1987), 111-127.
  4. [B1] L. Block, Simple periodic orbits of mappings of the interval, Trans. Amer. Math. Soc. 254 (1979), 391-398.
  5. [B2] L. Block, Periodic orbits of continuous mappings of the circle, ibid. 260 (1980), 553-562.
  6. [BGMY] L. Block, J. Guckenheimer, M. Misiurewicz and L. S. Young, Periodic points and topological entropy of one dimensional maps, in: Global Theory of Dynamical Systems, Lecture Notes in Math. 819, Springer, Berlin, 1980, 18-34.
  7. [Bl] A. Blokh, Rotation numbers, twists and a Sharkovskii-Misiurewicz-type ordering for patterns on the interval, Ergodic Theory Dynam. Systems 15 (1995), 1331-1337.
  8. [BM] A. Blokh and M. Misiurewicz, Entropy of twist interval maps, MSRI Preprint No. 041-94, Math. Sci. Res. Inst., Berkeley, 1994.
  9. [BK] J. Bobok and M. Kuchta, Invariant measures for maps of the interval that do not have points of some period, Ergodic Theory Dynam. Systems 14 (1994), 9-21.
  10. [C] W. A. Coppel, Šarkovskii-minimal orbits, Math. Proc. Cambridge Philos. Soc. 93 (1983), 397-408.
  11. [HW] G. H. Hardy and E. M. Wright, An Introduction to the Theory of Numbers, 4th ed., Oxford Univ. Press, Oxford, 1960.
  12. [LMPY] T.-Y. Li, M. Misiurewicz, G. Pianigiani and J. A. Yorke, No division implies chaos, Trans. Amer. Math. Soc. 273 (1982), 191-199.
  13. [S] A. N. Sharkovskiĭ, Co-existence of cycles of a continuous mapping of the line into itself, Ukrain. Mat. Zh. 16 (1964), 61-71 (in Russian).
  14. [St] P. Štefan, A theorem of Šarkovskiĭ on the existence of periodic orbits of continuous endomorphisms of the real line, Comm. Math. Phys. 54 (1977), 237-248.
Pages:
33-66
Main language of publication
English
Received
1996-10-24
Accepted
1997-04-22
Published
1998
Exact and natural sciences