PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
1998 | 155 | 2 | 189-199
Tytuł artykułu

Porosity of Collet–Eckmann Julia sets

Treść / Zawartość
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
We prove that the Julia set of a rational map of the Riemann sphere satisfying the Collet-Eckmann condition and having no parabolic periodic point is mean porous, if it is not the whole sphere. It follows that the Minkowski dimension of the Julia set is less than 2.
Słowa kluczowe
Twórcy
  • Institute of Mathematics, Polish Academy of Sciences, Śniadeckich 8, 00-950 Warszawa, Poland, feliksp@impan.gov.pl
Bibliografia
  • [BC] M. Benedicks and L. Carleson, The dynamics of the Hénon maps, Ann. of Math. 133 (1991), 73-169.
  • [CE] P. Collet and J.-P. Eckmann, Positive Lyapunov exponents and absolute continuity for maps of the interval, Ergodic Theory Dynam. Systems 3 (1983), 13-46.
  • [CJY] L. Carleson, P. Jones and J.-C. Yoccoz, Julia and John, Bol. Soc. Brasil. Mat. 25 (1994), 1-30.
  • [DPU] M. Denker, F. Przytycki and M. Urbański, On the transfer operator for rational functions on the Riemann sphere, Ergodic Theory Dynam. Systems 16 (1996), 255-266.
  • [DU] M. Denker and M. Urbański, On Hausdorff measures on Julia sets of subexpanding rational maps, Israel J. Math. 76 (1992), 193-214.
  • [G] J. Graczyk, Hyperbolic subsets, conformal measures and Hausdorff dimension of Julia sets, preprint, 1995.
  • [GS] J. Graczyk and S. Smirnov, Collet, Eckmann, & Hölder, Invent. Math., to appear.
  • [JM] P. Jones and N. Makarov, Density properties of harmonic measure, Ann. of Math. 142 (1995), 427-455.
  • [KR] P. Koskela and S. Rohde, Hausdorff dimension and mean porosity, Math. Ann., to appear.
  • [LP] G. Levin and F. Przytycki, When do two rational functions have the same Julia set?, Proc. Amer. Math Soc. 125 (1997), 2179-2190.
  • [M] R. Mañé, On a theorem of Fatou, Bol. Soc. Brasil. Mat. 24 (1993), 1-12.
  • [McM] C. McMullen, Self-similarity of Siegel discs and Hausdorff dimension of Julia sets, preprint, 1995.
  • [NPV] F. Nazarov, I. Popovici and A. Volberg, Domains with quasi-hyperbolic boundary condition, domains with Greens boundary condition, and estimates of Hausdorff dimension of their boundary, preprint, 1995.
  • [NP] T. Nowicki and F. Przytycki, The conjugacy of Collet-Eckmann's map of the interval with the tent map is Hölder continuous, Ergodic Theory Dynam. Systems 9 (1989), 379-388.
  • [P] C. Pommerenke, Boundary Behaviour of Conformal Maps, Springer, 1992.
  • [P1] F. Przytycki, Iterations of holomorphic Collet-Eckmann maps: conformal and invariant measures, Trans. Amer. Math. Soc., to appear.
  • [P2] F. Przytycki, On measure and Hausdorff dimension of Julia sets for holomorphic Collet-Eckmann maps, in: Internat. Conf. on Dynamical Systems, Montevideo 1995 - a Tribute to Ricardo Mañ (F. Ledrappier, J. Lewowicz and S. Newhouse, eds.), Pitman Res. Notes Math. 362, Longman, 1996, 167-181.
  • [PUZ] F. Przytycki, M. Urbański and A. Zdunik, Harmonic, Gibbs and Hausdorff measures on repellers for holomorphic maps, II, Studia Math. 97 (1991), 189-225.
  • [SS] W. Smith and D. Stegenga, Exponential integrability of the quasihyperbolic metric in Hölder domains, Ann. Acad. Sci. Fenn. 16 (1991), 345-360.
  • [T] M. Tsujii, Positive Lyapunov exponents in families of one dimensional dynamical systems, Invent. Math. 111 (1993), 113-137.
  • [U] M. Urbański, Rational functions with no recurrent critical points, Ergodic Theory Dynam. Systems 14 (1994), 391-414.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.bwnjournal-article-fmv155i2p189bwm
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.