ArticleOriginal scientific text

Title

Fine properties of Baire one functions

Authors 1, 2, 3, 4

Affiliations

  1. Department of Mathematics, University of Louisville, Louisville, Kentucky 40292, U.S.A.
  2. Department of Mathematics, Washington and Lee University, Lexington, Virginia 24450, U.S.A.
  3. Department of Mathematics, California State University at San Bernardino, San Bernardino, California 92407, U.S.A.
  4. Department of Mathematical Sciences, University of Wisconsin-Milwaukee, Milwaukee, Wisconsin 53201, U.S.A.

Abstract

A new theorem in the theory of first return representations of Baire class one functions of a real variable is presented which has as immediate consequences several known characterizations of standard subclasses of the Baire one functions. Further, this theorem yields new insights into how finely Baire one functions can be recovered and yields a characterization of another subclass of Baire one functions.

Bibliography

  1. U. B. Darji and M. J. Evans, Recovering Baire one functions, Mathematika 42 (1995), 43-48.
  2. U. B. Darji, M. J. Evans, and P. D. Humke, First return approachability, J. Math. Anal. Appl. 199 (1996), 545-557.
  3. U. B. Darji, M. J. Evans, and R. J. O'Malley, First return path systems: differentiability, continuity, and orderings, Acta Math. Hungar. 66 (1995), 83-103.
  4. U. B. Darji, M. J. Evans, and R. J. O'Malley, A first return characterization of Baire one functions, Real Anal. Exchange 19 (1993-94), 510-515.
  5. U. B. Darji, M. J. Evans, and R. J. O'Malley, Universally first return continuous functions, Proc. Amer. Math. Soc. 123 (1995), 2677-2685.
  6. M. J. Evans and R. J. O'Malley, Fine tuning the recoverability of Baire one functions, Real Anal. Exchange 21 (1995-96), 165-174.
  7. S. Kempisty, Sur les fonctions quasicontinues, Fund. Math. 19 (1932), 184-197.
  8. K. Kuratowski, Topology, Vol. I, Academic Press, 1966.
  9. I. Maximoff, Sur la transformation continue de quelques fonctions en dérivées exactes, Bull. Soc. Phys. Math. Kazan (3) 12 (1940), 57-81.
  10. D. Preiss, Maximoff's theorem, Real Anal. Exchange 5 (1979), 92-104.
Pages:
177-188
Main language of publication
English
Received
1997-04-16
Published
1998
Exact and natural sciences