ArticleOriginal scientific text
Title
A polarized partition relation and failure of GCH at singular strong limit
Authors 1, 2
Affiliations
- epartment of Mathematics, Rutgers University, New Brunswick, New Jersey 08903, U.S.A.
- Institute of Mathematics, The Hebrew University, 91 904 Jerusalem, Israel
Abstract
The main result is that for λ strong limit singular failing the continuum hypothesis (i.e. ), a polarized partition theorem holds.
Bibliography
- [EHR] P. Erdős, A. Hajnal and R. Rado, Partition relations for cardinal numbers, Acta Math. Acad. Sci. Hungar. 16 (1965), 93-196.
- [BH] J. Baumgartner and A. Hajnal, Polarized partition relations, preprint, 1995.
- [J] T. Jech, Set Theory, Academic Press, New York, 1978.
- [Sh:g] S. Shelah, Cardinal Arithmetic, Oxford Logic Guides 29, Oxford Univ. Press, 1994.
- [Sh 430] S. Shelah, Further cardinal arithmetic, Israel J. Math. 95 (1996), 61-114.
- [Sh 420] S. Shelah, Advances in cardinal arithmetic, in: Finite and Infinite Combinatorics in Sets and Logic, N. W. Sauer et al. (eds.), Kluwer Acad. Publ., 1993, 355-383.
- [Sh 108] S. Shelah, On successors of singular cardinals, in: Logic Colloquium '78 (Mons, 1978), Stud. Logic Found. Math. 97, North-Holland, Amsterdam, 1979, 357-380.