ArticleOriginal scientific text

Title

A functional S-dual in a strong shape category

Authors 1

Affiliations

  1. Fachbereich Mathematik, Johann-Wolfgang-Goethe Universität, Robert-Mayer Str. 6-10, 60054 Frankfurt a.M., Germany

Abstract

In the S-category {gotP} (with compact-open strong shape mappings, cf. §1, instead of continuous mappings, and arbitrary finite-dimensional separable metrizable spaces instead of finite polyhedra) there exists according to [1], [2] an S-duality. The S-dual DX,X=(X,n){gotP}, turns out to be of the same weak homotopy type as an appropriately defined functional dual (S0)X¯ (Corollary 4.9). Sometimes the functional object XY¯ is of the same weak homotopy type as the "real" function space XY (§5).

Keywords

S-duality, functional S-dual, virtual spaces, weak homotopy type, compact-open strong shape

Bibliography

  1. F. W. Bauer, A strong shape theory admitting an S-dual, Topology Appl. 62 (1995), 207-232.
  2. F. W. Bauer, A strong shape theory with S-duality, Fund. Math. 154 (1997), 37-56.
  3. F. W. Bauer, Duality in manifolds, Ann. Mat. Pura Appl. (4) 136 (1984), 241-302.
  4. J. M. Cohen, Stable Homotopy, Lecture Notes in Math. 165, Springer, Heidelberg, 1970.
  5. J. Dugundji, Topology, Allyn and Bacon, Boston, 1966.
  6. B. Günther, The use of semisimplicial complexes in strong shape theory, Glas. Mat. 27 (47) (1992), 101-144.
  7. E. Spanier, Function spaces and duality, Ann. of Math. 70 (1959), 338-378.
  8. H. Thiemann, Strong shape and fibrations, Glas. Mat. 30 (50) (1995), 135-174.
Pages:
261-274
Main language of publication
English
Received
1996-01-25
Published
1997
Exact and natural sciences