ArticleOriginal scientific text
Title
A functional S-dual in a strong shape category
Authors 1
Affiliations
- Fachbereich Mathematik, Johann-Wolfgang-Goethe Universität, Robert-Mayer Str. 6-10, 60054 Frankfurt a.M., Germany
Abstract
In the S-category (with compact-open strong shape mappings, cf. §1, instead of continuous mappings, and arbitrary finite-dimensional separable metrizable spaces instead of finite polyhedra) there exists according to [1], [2] an S-duality. The S-dual , turns out to be of the same weak homotopy type as an appropriately defined functional dual (Corollary 4.9). Sometimes the functional object is of the same weak homotopy type as the "real" function space (§5).
Keywords
S-duality, functional S-dual, virtual spaces, weak homotopy type, compact-open strong shape
Bibliography
- F. W. Bauer, A strong shape theory admitting an S-dual, Topology Appl. 62 (1995), 207-232.
- F. W. Bauer, A strong shape theory with S-duality, Fund. Math. 154 (1997), 37-56.
- F. W. Bauer, Duality in manifolds, Ann. Mat. Pura Appl. (4) 136 (1984), 241-302.
- J. M. Cohen, Stable Homotopy, Lecture Notes in Math. 165, Springer, Heidelberg, 1970.
- J. Dugundji, Topology, Allyn and Bacon, Boston, 1966.
- B. Günther, The use of semisimplicial complexes in strong shape theory, Glas. Mat. 27 (47) (1992), 101-144.
- E. Spanier, Function spaces and duality, Ann. of Math. 70 (1959), 338-378.
- H. Thiemann, Strong shape and fibrations, Glas. Mat. 30 (50) (1995), 135-174.