ArticleOriginal scientific text
Title
Branched coverings and cubic Newton maps
Authors 1
Affiliations
- Department of Mathematics, University of Warwick, Coventry CV4 7AL, United Kingdom
Abstract
We construct branched coverings such as matings and captures to describe the dynamics of every critically finite cubic Newton map. This gives a combinatorial model of the set of cubic Newton maps as the gluing of a subset of cubic polynomials with a part of the filled Julia set of a specific polynomial (Figure 1).
Bibliography
- [B] P. Blanchard, Complex analytic dynamics on the Riemann sphere, Bull. Amer. Math. Soc. 11 (1984), 85-141.
- [CGS] J. Curry, L. Garnett and D. Sullivan, On the iteration of rational functions: Computer experiments with Newton's method, Comm. Math. Phys. 91 (1983), 267-277.
- [D1] A. Douady, Systèmes dynamiques holomorphes, Séminaire Bourbaki, 35e année, 1982-1983, exp. no. 599, 1982.
- [D2] A. Douady, Algorithm for computing angles in the Mandelbrot set, in: Chaotic Dynamics and Fractals, M. F. Barnsley and S. G. Demko (eds.), Academic Press, New York, 1986, 155-168.
- [D3] A. Douady, Chirurgie sur les applications holomorphes, in: Proc. Internat. Congress Math., Berkeley, Calif., 1986, 724-738 (English version: preprint MSRI, 1986).
- [DH1] A. Douady et J. H. Hubbard, Étude dynamique des polynômes complexes, I et II, avec la collaboration de P. Lavaurs, Tan Lei et P. Sentenac, Publication d'Orsay 84-02, 85-04, 1984/1985.
- [DH2] A. Douady et J. H. Hubbard, A proof of Thurston's topological characterization of rational functions, Acta Math. 171 (1993), 263-297.
- [DH3] A. Douady et J. H. Hubbard, On the dynamics of polynomial-like mappings, Ann. Sci. École Norm. Sup. (4) 18 (1985), 287-343.
- [F] D. Faught, Local connectivity in a family of cubic polynomials, Ph.D. thesis, Cornell Univ., Ithaca, N.Y., 1992.
- [Ha] F. von Haeseler, Über Attraktionsgebiete superattraktiver Zykle, Ph.D. thesis, Bremen Univ., Bremen, 1985.
- [HP] F. von Haeseler and H.-O. Peitgen, Newton's method and complex dynamical systems, Acta Appl. Math. 13 (1988), 3-58.
- [He] J. Head, The combinatorics of Newton's method for cubic polynomials, Ph.D. thesis, Cornell Univ., Ithaca, N.Y., 1987.
- [Le] S. Levy, Critically finite rational maps, Ph.D. Thesis, Princeton Univ., Princeton, N.J., 1985.
- [Me] H.-G. Meier, On the connectedness of the Julia-set for rational functions, preprint, Aachen Univ., 1989.
- [M1] J. Milnor, On cubic polynomials with periodic critical point (very rough draft), 5-28-91.
- [M2] J. Milnor, Dynamics in one complex variable: Introductory lectures, preprint Stony Brook 1990-5.
- [Prz] F. Przytycki, Remarks on the simple connectedness of basins of sinks for iterations of rational maps, in: Dynamical Systems and Ergodic Theory, K. Krzyżewski (ed.), PWN-Polish Sci. Publ., 1989, 229-235.
- [R1] M. Rees, A partial description of parameter space of rational maps of degree two: Part I, Acta Math. 168 (1992), 11-87.
- [R2] M. Rees, A partial description of parameter space of rational maps of degree two: Part II, Proc. London Math. Soc. (3) 70 (1995), 644-690.
- [R3] M. Rees, Realization of matings of polynomials as rational maps of degree two, manuscript, 1986.
- [Sa] D. Saupe, Discrete versus continuous Newton's method: A case study, Acta Appl. Math. 13 (1988), 59-80.
- [Sh1] M. Shishikura, The connectivity of the Julia set of rational maps and Fixed points, preprint, I.H.E.S., Bures-sur-Yvette, 1990.
- [Sh2] M. Shishikura, On a theorem of M. Rees for matings of polynomials, preprint, I.H.E.S., Bures-sur-Yvette, 1990.
- [ST] M. Shishikura and L. Tan, A family of cubic rational maps and matings of cubic polynomials, preprint 88-50, Max-Planck-Institut für Mathematik, Bonn.
- [Ta] L. Tan, Matings of quadratic polynomials, Ergodic Theory Dynam. Systems 12 (1992), 589-620.
- [TY] L. Tan and Y. C. Yin, Local connectivity of the Julia set for geometrically finite rational maps, Sci. in China (Ser. A) 39 (1) (1996), 39-47.
- [Th] W. Thurston, The combinatorics of iterated rational maps, preprint, Princeton Univ., Princeton, N.J., 1983.
- [W] B. Wittner, On the bifurcation loci of rational maps of degree two, Ph.D. thesis, Cornell Univ., Ithaca, N.Y., 1986.