ArticleOriginal scientific text

Title

Loop spaces and homotopy operations

Authors 1

Affiliations

  1. Department of Mathematics and Computer Science, University of Haifa, 31905 Haifa, Israel

Abstract

We describe an obstruction theory for an H-space X to be a loop space, in terms of higher homotopy operations taking values in πX. These depend on first algebraically "delooping" the Π-algebras πX, using the H-space structure on X, and then trying to realize the delooped Π-algebra.

Keywords

loop space, topological group, H-space, Π-algebra, delooping, higher homotopy operations, obstruction theory

Bibliography

  1. [A] J. F. Adams, The sphere, considered as an H-space mod p, Quart. J. Math. Oxford Ser. (2) 12 (1961), 52-60.
  2. [B] H. J. Baues, Geometry of loop spaces and the cobar construction, Mem. Amer. Math. Soc. 230 (1980).
  3. [Bl1] D. Blanc, A Hurewicz spectral sequence for homology, Trans. Amer. Math. Soc. 318 (1990), 335-354.
  4. [Bl2] D. Blanc, Abelian Π-algebras and their projective dimension, in: M. C. Tangora (ed.), Algebraic Topology: Oaxtepec 1991, Contemp. Math. 146, Amer. Math. Soc., Providence, R.I., 1993, 39-48.
  5. [Bl3] D. Blanc, Higher homotopy operations and the realizability of homotopy groups, Proc. London Math. Soc. (3) 70 (1995), 214-240.
  6. [Bl4] D. Blanc, Homotopy operations and the obstructions to being an H-space, Manuscripta Math. 88 (1995), 497-515.
  7. [Bl5] D. Blanc, Homotopy operations and rational homotopy type, preprint, 1996.
  8. [BV] J. M. Boardman and R. M. Vogt, Homotopy Invariant Algebraic Structures on Topological Spaces, Lecture Notes in Math. 347, Springer, Berlin, 1973.
  9. [BF] A. K. Bousfield and E. M. Friedlander, Homotopy theory of Γ-spaces, spectra, and bisimplicial sets, in: M. G. Barratt and M. E. Mahowald (eds.), Geometric Applications of Homotopy Theory, II, Lecture Notes in Math. 658, Springer, Berlin, 1978, 80-130.
  10. [BK] A. K. Bousfield and D. M. Kan, Homotopy Limits, Completions, and Localizations, Lecture Notes in Math. 304, Springer, Berlin, 1972.
  11. [BL] R. Brown and J.-L. Loday, Van Kampen theorems for diagrams of spaces, Topology 26 (1987), 311-335.
  12. [C] E. B. Curtis, Simplicial homotopy theory, Adv. in Math. 6 (1971), 107-209.
  13. [DL] A. Dold and R. K. Lashof, Principal quasifibrations and fibre homotopy equivalence of bundles, Illinois J. Math. 3 (1959), 285-305.
  14. [DHK] W. G. Dwyer, P. S. Hirschhorn and D. M. Kan, Model categories and more general abstract homotopy theory, preprint, 1996.
  15. [DKS] W. G. Dwyer, D. M. Kan and J. H. Smith, Homotopy commutative diagrams and their realizations, J. Pure Appl. Algebra 57 (1989), 5-24.
  16. [F] M. Fuchs, A modified Dold-Lashof construction that does classify H-principal fibrations, Math. Ann. (2) 192 (1971), 328-340.
  17. [G] R. Godement, Topologie algébrique et théorie des faisceaux, Act. Sci. & Ind. 1252, Publ. Inst. Math. Univ. Strasbourg XIII, Hermann, Paris, 1964.
  18. [H] P. J. Hilton, A remark on loop spaces, Proc. Amer. Math. Soc. 15 (1964), 596-600.
  19. [Hi] P. S. Hirschhorn, Localization of model categories, preprint, 1996.
  20. [J] I. M. James, Reduced product spaces, Ann. of Math. (2) 62 (1955), 170-197.
  21. [K] D. M. Kan, On homotopy theory and c.s.s. groups, Ann. of Math. 68 (1958), 38-53.
  22. [Ka] R. M. Kane, The Homology of Hopf Spaces, North-Holland Math. Library 40, North-Holland, Amsterdam, 1988.
  23. [M] S. MacLane, Categories for the Working Mathematician, Grad. Texts in Math. 5, Springer, Berlin, 1971.
  24. [Ma1] J. P. May, Simplicial Objects in Algebraic Topology, Univ. Chicago Press, Chicago, 1967.
  25. [Ma2] J. P. May, The Geometry of Iterated Loop Spaces, Lecture Notes in Math. 271, Springer, Berlin, 1972.
  26. [Mi1] J. W. Milnor, Construction of universal bundles, I, Ann. of Math. (2) 3 (1956), 272-284.
  27. [Mi2] J. W. Milnor, On the construction FK, in: J. F. Adams (ed.), Algebraic Topology - A Student's Guide, London Math. Soc. Lecture Note Ser. 4, Cambridge Univ. Press, Cambridge, 1972, 119-136.
  28. [N] J. A. Neisendorfer, Properties of certain H-spaces, Quart. J. Math. Oxford Ser. (2) 34 (1983), 201-209.
  29. [Q1] D. G. Quillen, Homotopical Algebra, Lecture Notes in Math. 20, Springer, Berlin, 1963.
  30. [Q2] D. G. Quillen, Spectral sequences of a double semi-simplicial group, Topology 5 (1966), 155-156.
  31. [RS] C. P. Rourke and B. J. Sanderson, Δ-sets I: Homotopy theory, Quart. J. Math. Oxford Ser. (2) 22 (1972), 321-338.
  32. [S1] G. B. Segal, Classifying spaces and spectral sequences, Publ. Math. Inst. Hautes Etudes Sci. 34 (1968), 105-112.
  33. [S2] G. B. Segal, Categories and cohomology theories, Topology 13 (1974), 293-312.
  34. [St1] J. D. Stasheff, Homotopy associativity of H-spaces, I, Trans. Amer. Math. Soc. 108 (1963), 275-292.
  35. [St2] J. D. Stasheff, Homotopy associativity of H-spaces, II, Trans. Amer. Math. Soc., 293-312.
  36. [St3] J. D. Stasheff, H-spaces from a Homotopy Point of View, Lecture Notes in Math. 161, Springer, Berlin, 1970.
  37. [St4] J. D. Stasheff, H-spaces and classifying spaces: foundations and recent developments, in: A. Liulevicius (ed.), Algebraic Topology, Proc. Sympos. Pure Math. 22, Amer. Math. Soc., Providence, 1971, 247-272.
  38. [Ste] N. E. Steenrod, Milgram's classifying space of a topological group, Topology 7 (1968), 349-368.
  39. [Stv] C. R. Stover, A Van Kampen spectral sequence for higher homotopy groups, Topology 29 (1990), 9-26.
  40. [Su] M. Sugawara, A condition that a space is group-like, Math. J. Okayama Univ. 7 (1957), 123-149.
  41. [W] G. W. Whitehead, Elements of Homotopy Theory, Grad. Texts in Math. 61, Springer, Berlin, 1971.
  42. [Z] A. Zabrodsky, Homotopy associativity and finite CW complexes, Topology 9 (1970), 121-128.
  43. [Zi] G. M. Ziegler, Lectures on Polytopes, Grad. Texts in Math. 152, Springer, Berlin, 1995.
Pages:
75-95
Main language of publication
English
Received
1996-09-16
Accepted
1997-02-07
Published
1997
Exact and natural sciences