ArticleOriginal scientific text

Title

A strong shape theory with S-duality

Authors 1

Affiliations

  1. Fachbereich Mathematik, Johann-Wolfgang-Goethe Universität, Robert-Mayer Str. 6-10, 60054 Frankfurt a.M. 11, Germany

Abstract

If in the classical S-category akP, 1)contuousmapπngsarereplacedbycoact-openstrongshape(={coss})morϕsms(cf.§1or[1],§2),and2)-uctsareerlyreerpreted,thenanS-dualitytheoremforarbitrarysX ⊂ S^n!$! (rather than for compact polyhedra) holds (Theorem 2.1).

Keywords

S-duality, Alexander duality, compact-open strong shape, virtual spaces

Bibliography

  1. F. W. Bauer, A strong shape theory admitting an S-dual, Topology Appl. 62 (1995), 207-232.
  2. F. W. Bauer, A strong-shape theoretical version of a result due to E. Lima, Topology Appl. 40 (1991), 17-21.
  3. F. W. Bauer, Duality in manifolds, Ann. Mat. Pura Appl. (4) 136 (1984), 241-302.
  4. J. M. Boardman, Stable homotopy is not self-dual, Proc. Amer. Math. Soc. 26 (1970), 369-370.
  5. O. Hanner, Some theorems on absolute neighborhood retracts, Ark. Mat. 1 (1952), 389-408.
  6. Q. Haxhibeqiri and S. Nowak, Duality between stable strong shape morphisms and stable homotopy classes, Glas. Mat., to appear.
  7. E. Lima, The Spanier-Whitehead duality in new homotopy categories, Summa Brasil. Math. 4 (1959), 91-148.
  8. T. Y. Lin, Duality and Eilenberg-MacLane spectra, Proc. Amer. Math. Soc. 56 (1976), 291-299.
  9. H. R. Margolis, Spectra and the Steenrod Algebra, North-Holland Math. Library 29, North-Holland, 1983.
  10. E. Spanier, Algebraic Topology, McGraw-Hill, 1966.
Pages:
37-56
Main language of publication
English
Received
1996-01-25
Published
1997
Exact and natural sciences