ArticleOriginal scientific text

Title

Property C'', strong measure zero sets and subsets of the plane

Authors 1

Affiliations

  1. Department of Mathematics, University of Wrocław, Pl. Grunwaldzki 2/4, 50-384 Wrocław, Poland

Abstract

Let X be a set of reals. We show that  • X has property C" of Rothberger iff for all closed F ⊆ ℝ × ℝ with vertical sections Fx (x ∈ X) null, xXFx is null;  • X has strong measure zero iff for all closed F ⊆ ℝ × ℝ with all vertical sections Fx (x ∈ ℝ) null, xXFx is null.

Bibliography

  1. [AR] A. Andryszczak and I. Recław, A note on strong measure zero sets, Acta Univ. Carolin. Math. Phys. 34 (2) (1993), 7-9.
  2. [BS] T. Bartoszyński and S. Shelah, Closed measure zero sets, Ann. Pure Appl. Logic 58 (1992), 93-110.
  3. [D] C. Dellacherie, Un cours sur les ensembles analytiques, in: Analytic Sets, C. A. Rogers et al. (eds.), Academic Press, 1980, 183-316.
  4. [FM] D. H. Fremlin and A. Miller, On some properties of Hurewicz, Menger and Rothberger, Fund. Math. 129 (1988), 17-33.
  5. [G] F. Galvin, Indeterminacy of point-open games, Bull. Acad. Polon. Sci. Sér. Sci. Math. Astronom. Phys. 26 (1978), 445-449.
  6. [GMS] F. Galvin, J. Mycielski and R. M. Solovay, Strong measure zero sets, Notices Amer. Math. Soc. 26 (1979), A-280.
  7. [Ke] A. S. Kechris, Classical Descriptive Set Theory, Grad. Texts in Math. 156, Springer, 1995.
  8. [M] A. W. Miller, Special subsets of the real line, in: Handbook of Set-Theoretic Topology, K. Kunen and J. E. Vaughan (eds.), North-Holland, 1984, 201-233.
  9. [M1] A. W. Miller, Some properties of measure and category, Trans. Amer. Math. Soc. 266 (1981), 93-114, and 271 (1982), 347-348.
  10. [P] J. Pawlikowski, Undetermined sets of point-open games, Fund. Math. 144 (1994), 279-285.
  11. [P1] J. Pawlikowski, A characterization of strong measure zero sets, Israel J. Math. 93 (1996), 171-184.
  12. [R] I. Recław, Every Lusin set is undetermined in the point-open game, Fund. Math. 144 (1994), 43-54.
  13. [Sh] S. Shelah, Vive la différence I: Nonisomorphism of ultrapowers of countable models, in: Set Theory of the Continuum, H. Judah, W. Just and H. Woodin (eds.), Springer, 1992, 357-405.
  14. [T] J. Truss, Sets having calibre 1, in: Logic Colloquium '76, R. Gandy and M. Hyland (eds.), Stud. Logic Found. Math. 87, North-Holland, 1977, 595-612.
Pages:
277-293
Main language of publication
English
Received
1996-09-04
Accepted
1997-03-01
Published
1997
Exact and natural sciences