ArticleOriginal scientific text

Title

Préimages d’espaces héréditairement de Baire

Authors 1

Affiliations

  1. Département de Mathématiques, CNRS UPRES-A 6085 Université de Rouen 76821 Mont-Saint-Aignan, France

Abstract

The main result is slightly more general than the following statement: Let f: X → Y be a quasi-perfect mapping, where X is a regular space and Y a Hausdorff totally non-meagre space; if X or Y is χ-scattered, or if Y is a Lasnev space, then X is totally non-meagre. In particular, the product of a compact space X and a Hausdorff regular totally non-meagre space Y which is χ-scattered or a Lasnev space, is totally non-meagre.

Keywords

Baire space, totally non-meagre space, Lasnev space, χ-scattered space, quasi-perfect map

Bibliography

  1. [AL] J. M. Aarts and D. J. Lutzer, The product of totally nonmeagre spaces, Proc. Amer. Math. Soc. 38 (1973), 198-200.
  2. [D] G. Debs, Espaces héréditairement de Baire, Fund. Math. 129 (1988), 199-206.
  3. [E] R. Engelking, General Topology, Heldermann, Berlin, 1989.
  4. [G] G. Gruenhage, Generalized metric spaces, dans : Handbook of Set-Theoretic Topology, K. Kunen and J. E. Vaughan (eds.), Elsevier, Amsterdam, 1984, 961-1043.
  5. [H] W. Hurewicz, Relativ perfekte Teile von Punktmengen und Mengen (A), Fund. Math. 12 (1928), 78-109.
Pages:
191-197
Main language of publication
French
Received
1996-11-26
Accepted
1997-02-26
Published
1997
Exact and natural sciences