ArticleOriginal scientific text

Title

Continuous Alexander–Spanier cohomology classifies principal bundles with Abelian structure group

Authors 1, 2

Affiliations

  1. Fachbereich Mathematik, Johann Wolfgang Goethe-Universität, Robert-Mayer-Strasse 6-10, 60054 Frankfurt, Germany
  2. Department of Mathematics, Georgian Technical University, 77 Kostava Street, 380075 Tbilisi, Republic of Georgia

Abstract

We prove that Alexander-Spanier cohomology Hn(X;G) with coefficients in a topological} Abelian group G is isomorphic to the group of isomorphism classes of principal bundles with certain Abelian structure groups. The result holds if either X is a CW-space and G arbitrary or if X is metrizable or compact Hausdorff and G an ANR.

Bibliography

  1. A. Dold und R. Thom, Quasifaserungen und unendliche symmetrische Produkte, Ann. of Math. 67 (1958), 239-281.
  2. P. Gabriel and M. Zisman, Calculus of Fractions and Homotopy Theory, Ergeb. Math. Grenzgeb. 35, Springer, 1967.
  3. K. Lamotke, Semisimpliziale algebraische Topologie, Grundlehren Math. Wiss. 147, Springer, 1968.
  4. J. D. Lawson, Comparison of taut cohomologies, Aequationes Math. 9 (1973), 201-209.
  5. J. P. May, Simplicial Objects in Algebraic Topology, University of Chicago Press, Midway Reprint, 1982.
  6. L. Mdzinarishvili, Partially continuous Alexander-Spanier cohomology theory, Grüne Preprintreihe der Universität Heidelberg, Heft 130, 1996.
  7. E. Michael, Local properties of topological spaces, Duke Math. J. 21 (1954), 163-171.
Pages:
154-156
Main language of publication
English
Received
1996-06-17
Published
1997
Exact and natural sciences