ArticleOriginal scientific text
Title
Continuous Alexander–Spanier cohomology classifies principal bundles with Abelian structure group
Authors 1, 2
Affiliations
- Fachbereich Mathematik, Johann Wolfgang Goethe-Universität, Robert-Mayer-Strasse 6-10, 60054 Frankfurt, Germany
- Department of Mathematics, Georgian Technical University, 77 Kostava Street, 380075 Tbilisi, Republic of Georgia
Abstract
We prove that Alexander-Spanier cohomology with coefficients in a topological} Abelian group G is isomorphic to the group of isomorphism classes of principal bundles with certain Abelian structure groups. The result holds if either X is a CW-space and G arbitrary or if X is metrizable or compact Hausdorff and G an ANR.
Bibliography
- A. Dold und R. Thom, Quasifaserungen und unendliche symmetrische Produkte, Ann. of Math. 67 (1958), 239-281.
- P. Gabriel and M. Zisman, Calculus of Fractions and Homotopy Theory, Ergeb. Math. Grenzgeb. 35, Springer, 1967.
- K. Lamotke, Semisimpliziale algebraische Topologie, Grundlehren Math. Wiss. 147, Springer, 1968.
- J. D. Lawson, Comparison of taut cohomologies, Aequationes Math. 9 (1973), 201-209.
- J. P. May, Simplicial Objects in Algebraic Topology, University of Chicago Press, Midway Reprint, 1982.
- L. Mdzinarishvili, Partially continuous Alexander-Spanier cohomology theory, Grüne Preprintreihe der Universität Heidelberg, Heft 130, 1996.
- E. Michael, Local properties of topological spaces, Duke Math. J. 21 (1954), 163-171.