ArticleOriginal scientific text

Title

A function space Cp(X) not linearly homeomorphic to Cp(X) × ℝ

Authors 1, 2

Affiliations

  1. Faculty of Mathematics and Computer Science, Vrije Universiteit, De Boelelaan 1081a, 1081 HV Amsterdam, The Netherlands
  2. Institute of Mathematics, University of Warsaw, Banacha 2, 02-097 Warszawa, Poland

Abstract

We construct two examples of infinite spaces X such that there is no continuous linear surjection from the space of continuous functions cp(X) onto cp(X) × ℝ.Inpartica̲r,c_p(X)is¬learlyhomeomorϕcc_p(X)×. One of these examples is compact. This answers some questions of Arkhangel'skiĭ.

Keywords

function space, pointwise convergence topology, cp(X), linear homeomorphism

Bibliography

  1. [Ar1] A. V. Arkhangel'skiĭ, Linear homeomorphisms of function spaces, Soviet Math. Dokl. 25 (3) (1982), 852-855.
  2. [Ar2] A. V. Arkhangel'skiĭ, A survey of Cp-theory, Questions Answers Gen. Topology 5 (1987), 1-109.
  3. [Ar3] A. V. Arkhangel'skiĭ, Problems in Cp-Theory, in: Open Problems in Topology, North-Holland, 1990, 601-615.
  4. [Ar4] A. V. Arkhangel'skiĭ, Cp-theory, in: Recent Progress in General Topology, North-Holland, 1992, 1-56.
  5. [BdG] J. Baars and J. de Groot, On Topological and Linear Equivalence of Certain Function Spaces, CWI Tract 86, Stichting Mathematisch Centrum, Centrum voor Wiskunde en Informatica, Amsterdam, 1992.
  6. [Ber] Yu. F. Bereznitskiĭ, Nonhomeomorphism between two bicompacta, Vestnik Moskov. Univ. Ser. I Mat. Mekh. 26 (6) (1971), 8-10 (in Russian).
  7. [Be] C. Bessaga, A Lipschitz invariant of normed linear spaces related to the entropy numbers, Rocky Mountain J. Math. 10 (1980), 81-84.
  8. [BPR] C. Bessaga, A. Pełczyński and S. Rolewicz, On diametral approximative dimension and linear homogeneity of F-spaces, Bull. Acad. Polon. Sci. Sér. Sci. Math. Astronom. Phys. 9 (1961), 677-683.
  9. [Du] E. Dubinsky, Every separable Fréchet space contains a non-stable dense subspace, Studia Math. 40 (1971), 77-79.
  10. [Go] W. T. Gowers, A solution to Banach's hyperplane problem, Bull. London Math. Soc. 26 (1994), 523-530.
  11. [GM] W. T. Gowers and B. Maurey, The unconditional basic sequence problem, J. Amer. Math. Soc. 6 (1993), 851-874.
  12. [Gu] S. P. Gul'ko, Spaces of continuous functions on ordinals and ultrafilters, Mat. Zametki 47 (4) (1990), 26-34 (in Russian).
  13. [Kun] K. Kunen, Weak P-points in N*, in: Colloq. Math. Soc. János Bolyai 23, North-Holland, 1978, 741-749.
  14. [Ku] K. Kuratowski, Sur la puissance de l'ensemble des "nombres de dimension" au sens de M. Fréchet, Fund. Math. 8 (1926), 201-208.
  15. [KS] K. Kuratowski et W. Sierpiński, Sur un problème de M. Fréchet concernant les dimensions des ensembles linéaires, Fund. Math. 8 (1926), 193-200.
  16. [Ma1] W. Marciszewski, A pre-Hilbert space without any continuous map onto its own square, Bull. Polish Acad. Sci. Math. 31 (1983), 393-397.
  17. [Ma2] W. Marciszewski, A function space C(K) not weakly homeomorphic to C(K) × C(K), Studia Math. 88 (1988), 129-137.
  18. [Ma3] W. Marciszewski, On van Mill's example of a normed X with XX×, preprint.
  19. [vM1] J. van Mill, An introduction to ℝ, in: Handbook of Set-Theoretic Topology, North-Holland, 1984, 503-567.
  20. [vM2] J. van Mill, Domain invariance in infinite-dimensional linear spaces, Proc. Amer. Math. Soc. 101 (1987), 173-180.
  21. [Po1] R. Pol, An infinite-dimensional pre-Hilbert space not homeomorphic to its own square, Proc. Amer. Math. Soc. 90 (1984), 450-454.
  22. [Po2] R. Pol, On metrizable E with Cp(E)Cp(E)×Cp(E), Mathematika 42 (1995), 49-55.
  23. [Ro] S. Rolewicz, An example of a normed space non-isomorphic to its product by the real line, Studia Math. 40 (1971), 71-75.
Pages:
125-40
Main language of publication
English
Received
1996-06-01
Accepted
1997-03-03
Published
1997
Exact and natural sciences