ArticleOriginal scientific text
Title
-sets in topological spaces and games
Authors 1, 2, 3, 1
Affiliations
- Department of Mathematics, Ohio University, Athens, Ohio 45701, U.S.A.
- epartment of Mathematics, Boise State University, Boise, Idaho 83725, U.S.A.
- Department of Mathematics, York University, North York, Ontario, Canada
Abstract
Players ONE and TWO play the following game: In the nth inning ONE chooses a set from a prescribed family ℱ of subsets of a space X; TWO responds by choosing an open subset of X. The players must obey the rule that for each n. TWO wins if the intersection of TWO's sets is equal to the union of ONE's sets. If ONE has no winning strategy, then each element of ℱ is a -set. To what extent is the converse true? We show that:
(A) For ℱ the collection of countable subsets of X:
1. There are subsets of the real line for which neither player has a winning strategy in this game.
2. The statement "If X is a set of real numbers, then ONE does not have a winning strategy if, and only if, every countable subset of X is a -set" is independent of the axioms of classical mathematics.
3. There are spaces whose countable subsets are -sets, and yet ONE has a winning strategy in this game.
4. For a hereditarily Lindelöf space X, TWO has a winning strategy if, and only if, X is countable.
(B) For ℱ the collection of -subsets of a subset X of the real line the determinacy of this game is independent of ZFC.
Keywords
game, strategy, Lusin set, Sierpiński set, Rothberger's property C", concentrated set, λ-set, σ-set, perfectly meager set, Q-set, -set, -set, -set, -set, ,
Bibliography
- Z. Balogh, There is a Q-set space in ZFC, Proc. Amer. Math. Soc. 113 (1991), 557-561.
- T. Bartoszyński and M. Scheepers, A-sets, Real Anal. Exchange 19 (1993-94), 521-528.
- A. S. Besicovitch, Concentrated and rarified sets of points, Acta Math. 62 (1934), 289-300.
- E. Čech, Sur la dimension des espaces parfaitement normaux, Bull. Internat. Acad. Bohême (Prague) 33 (1932), 38-55.
- H F. Hausdorff, Dimension und äusseres Mass, Math. Ann. 79 (1919), 157-179.
- W. Just, A. Miller, M. Scheepers and P. J. Szeptycki, The combinatorics of open covers II, Topology Appl. 73 (1996), 241-266.
- K. Kunen, Set Theory: An Introduction to Independence Proofs, North-Holland, 1984.
- K. Kuratowski, Topology, Vol. 1, Academic Press, 1966.
- K. Kuratowski, Sur une famille d'ensembles singuliers, Fund. Math. 21 (1933), 127-128.
- N. Lusin, Sur l'existence d'un ensemble non dénombrable qui est de première catégorie dans tout ensemble parfait, Fund. Math. 2 (1921), 155-157.
- N. Lusin, Sur les ensembles toujours de première catégorie, Fund. Math. 21 (1933), 114-126.
- A. W. Miller, On generating the category algebra and the Baire order problem, Bull. Acad. Polon. Sci. 27 (1979), 751-755.
- A. W. Miller, Special subsets of the real line, in: The Handbook of Set-Theoretic Topology, North-Holland, 1984, 201-223.
- F. Rothberger, Eine Verschärfung der Eigenschaft C, Fund. Math. 30 (1938), 50-55.
- F. Rothberger, On some problems of Hausdorff and of Sierpiński, Fund. Math. 35 (1948), 29-46.
- W. Sierpiński, Sur l'hypothese du continu
, Fund. Math. 5 (1924), 177-187. - W. Sierpiński, Sur deux consequences d'un théorème de Hausdorff, Fund. Math. 26 (1945), 269-272.
- L. A. Steen and J. A. Seebach, Jr., Counterexamples in Topology, 2nd ed., Springer, 1978.
- J. Steprāns, Combinatorial consequences of adding Cohen reals, in: Israel Math. Conf. Proc. 6, Bar-Ilan Univ., Ramat Gan, 1993, 583-617.
- E. Szpilrajn, Sur un problème de M. Banach, Fund. Math. 15 (1930), 212-214.
- E. Szpilrajn, Sur une classe de fonctions de M. Sierpiński et la classe correspondante d'ensembles, Fund. Math. 24 (1934), 17-34.