ArticleOriginal scientific text

Title

Nonseparable Radon measures and small compact spaces

Authors 1

Affiliations

  1. Institute of Mathematics, Polish Academy of Sciences, Kopernika 18, 51-617 Wrocław, Poland

Abstract

We investigate the problem if every compact space K carrying a Radon measure of Maharam type κ can be continuously mapped onto the Tikhonov cube [0,1]κ (κ being an uncountable cardinal). We show that for κ ≥ cf(κ) ≥ κ this holds if and only if κ is a precaliber of measure algebras. Assuming that there is a family of ω1 null sets in 2ω1 such that every perfect set meets one of them, we construct a compact space showing that the answer to the above problem is "no" for κ = ω. We also give alternative proofs of two related results due to Kunen and van Mill [18].

Bibliography

  1. S. Argyros, S. Mercourakis and S. Negrepontis, Functional-analytic properties of Corson-compact spaces, Studia Math. 89 (1988), 197-229.
  2. T. Bartoszyński and H. Judah, Set Theory: on the structure of the real line, A. K. Peters, 1995.
  3. T. Bartoszyński and S. Shelah, Closed measure zero sets, Ann. Pure Appl. Logic 58 (1992), 93-110.
  4. J. Brendle, H. Judah and S. Shelah, Combinatorial properties of Hechler forcing, Ann. Pure Appl. Logic 58 (1992), 185-199.
  5. J. Cichoń, A. Kamburelis and J. Pawlikowski, On dense subsets of the measure algebra, Proc. Amer. Math. Soc. 94 (1985), 142-146.
  6. J. Cichoń, A. Szymański and B. Węglorz, On intersections of sets of positive Lebesgue measure, Colloq. Math. 52 (1987), 173-177.
  7. W. W. Comfort and S. Negrepontis, Chain Conditions in Topology, Cambridge Univ. Press, 1982.
  8. R. G. Douglas, On extremal measures and subspace density, Michigan Math. J. 11 (1964), 243-246.
  9. M. Džamonja and K. Kunen, Measures on compact HS spaces, Fund. Math. 143 (1993), 41-54.
  10. M. Džamonja and K. Kunen, Properties of the class of measure separable compact spaces, Fund. Math. 147 (1995), 261-277.
  11. D. H. Fremlin, Consequences of Martin's Axiom, Cambridge Univ. Press, Cambridge, 1984.
  12. D. H. Fremlin, Measure algebras, in: Handbook of Boolean Algebras, J. D. Monk (ed.), North-Holland, 1989, Vol. 3, Chap. 22, 877-980.
  13. D. H. Fremlin, Real-valued measurable cardinals, in: Israel Math. Conf. Proc. 6, 1993, 961-1044.
  14. R. Haydon, On Banach spaces which contain l1(τ) and types of measures on compact spaces, Israel J. Math. 28 (1977) 313-324.
  15. R. Haydon, On dual L1-spaces and injective bidual Banach spaces, Israel J. Math. 31 (1978) 142-152.
  16. K. Kunen, Set Theory, Stud. Logic 102, North-Holland, 1980.
  17. K. Kunen, A compact L-space under CH, Topology Appl. 12 (1981), 283-287.
  18. K. Kunen and J. van Mill, Measures on Corson compact spaces, Fund. Math. 147 (1995), 61-72.
  19. G. Plebanek, Compact spaces that result from adequate families of sets, Topology Appl. 65 (1995), 257-270.
  20. G. Plebanek, On Radon measures on first-countable spaces, Fund. Math. 148 (1995), 159-164.
  21. Z. Semadeni, Banach Spaces of Continuous Functions, PWN, Warszawa, 1971.
  22. B. E. Shapirovskiĭ, Special types of embeddings in Tychonoff cubes. Subspaces of Σ-products and cardinal invariants, in: Á. Császár (ed.), Topology, Vol. II, North-Holand, Amsterdam, 1980, 1055-1086.
  23. J. E. Vaughan, Small uncountable cardinals and topology, in: Open Problems in Topology, J. van Mill and G. M. Reed (eds.), North-Holland, 1990, Chapter 11, 195-216.
Pages:
25-40
Main language of publication
English
Received
1996-05-07
Accepted
1996-11-14
Published
1997
Exact and natural sciences