We generalize the Lefschetz coincidence theorem to non-oriented manifolds. We use (co-) homology groups with local coefficients. This generalization requires the assumption that one of the considered maps is orientation true.
Department of Mathematics, University of Agriculture, Nowoursynowska 166, 02 766 Warszawa, Poland
Bibliografia
[Bd] G. Bredon, Geometry and Topology, Grad. Texts in Math. 139, Springer, New York, 1993.
[B] R. F. Brown, The Lefschetz Fixed Point Theorem, Scott, Foresman and Co., New York, 1971.
[BS] R. F. Brown and H. Schirmer, Nielsen coincidence theory and coincidence producing maps for manifolds with boundary, Topology Appl. 46 (1992), 65-79.
[DJ] R. Dobreńko and J. Jezierski, The coincidence Nielsen theory on non-orientable manifolds, Rocky Mountain J. Math. 23 (1993), 67-85.
[FH] E. Fadell and S. Husseini, Fixed point theory for non-simply connected manifolds, Topology 30 (1981), 53-92.
[G1] D. L. Gonçalves, Indices for coincidence classes and the Lefschetz formula for non-orientable manifolds, preprint, Mathematisches Institut, Universität Heidelberg.
[G2] D. L. Gonçalves, Coincidence theory for maps from a complex into a manifold, preprint.
[GO] D. L. Gonçalves and E. Oliveira, The Lefschetz coincidence numbers for maps on compact surfaces, preprint, Department of Mathematics, UFSCAR, S ao Carlos.
[Je] J. Jezierski, The Nielsen coincidence theory on topological manifolds, Fund. Math. 143 (1993), 167-178.
[Ji] B. Jiang, Lectures on the Nielsen Fixed Point Theory, Contemp. Math. 14, Amer. Math. Soc., Providence, 1983.
[M] K. Mukherjea, Coincidence theory for manifolds with boundary, Topology Appl. 46 (1992), 23-39.
[O] P. Olum, Obstructions to extensions and homotopies, Ann. of Math. 52 (1950), 1-50.
[Sp1] E. Spanier, Algebraic Topology, McGraw-Hill, New York, 1966.
[Sp2] E. Spanier, Duality in topological manifolds, in: Colloque de Topologie Tenu à Bruxelles, Centre Belge de Recherches Mathématiques, 1966, 91-111.
[V] J. Vick, Homology Theory, Academic Press, New York, 1973.
[W1] C. T. C. Wall, Surgery of non-simply-connected manifolds, Ann. of Math. 84 (1966), 217-276.
[W2] C. T. C. Wall, On Poincaré complex I, Ann. of Math. 86 (1967), 213-245.
[Wh] G. W. Whitehead, Elements of Homotopy Theory, Springer, New York, 1978.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.bwnjournal-article-fmv153i1p1bwm
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.