PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
1997 | 153 | 1 | 1-23
Tytuł artykułu

Lefschetz coincidence formula on non-orientable manifolds

Treść / Zawartość
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
We generalize the Lefschetz coincidence theorem to non-oriented manifolds. We use (co-) homology groups with local coefficients. This generalization requires the assumption that one of the considered maps is orientation true.
Słowa kluczowe
Rocznik
Tom
153
Numer
1
Strony
1-23
Opis fizyczny
Daty
wydano
1997
otrzymano
1995-04-28
poprawiono
1996-04-25
poprawiono
1996-12-12
Twórcy
  • Department of Mathematics-IME, University of São Paulo, Caixa Postal 66.281-AG. Cidade de São Paulo, 05389-970 São Paulo, Brasil, dlgoncal@ime.usp.br
Bibliografia
  • [Bd] G. Bredon, Geometry and Topology, Grad. Texts in Math. 139, Springer, New York, 1993.
  • [B] R. F. Brown, The Lefschetz Fixed Point Theorem, Scott, Foresman and Co., New York, 1971.
  • [BS] R. F. Brown and H. Schirmer, Nielsen coincidence theory and coincidence producing maps for manifolds with boundary, Topology Appl. 46 (1992), 65-79.
  • [DJ] R. Dobreńko and J. Jezierski, The coincidence Nielsen theory on non-orientable manifolds, Rocky Mountain J. Math. 23 (1993), 67-85.
  • [FH] E. Fadell and S. Husseini, Fixed point theory for non-simply connected manifolds, Topology 30 (1981), 53-92.
  • [G1] D. L. Gonçalves, Indices for coincidence classes and the Lefschetz formula for non-orientable manifolds, preprint, Mathematisches Institut, Universität Heidelberg.
  • [G2] D. L. Gonçalves, Coincidence theory for maps from a complex into a manifold, preprint.
  • [GO] D. L. Gonçalves and E. Oliveira, The Lefschetz coincidence numbers for maps on compact surfaces, preprint, Department of Mathematics, UFSCAR, S ao Carlos.
  • [Je] J. Jezierski, The Nielsen coincidence theory on topological manifolds, Fund. Math. 143 (1993), 167-178.
  • [Ji] B. Jiang, Lectures on the Nielsen Fixed Point Theory, Contemp. Math. 14, Amer. Math. Soc., Providence, 1983.
  • [M] K. Mukherjea, Coincidence theory for manifolds with boundary, Topology Appl. 46 (1992), 23-39.
  • [O] P. Olum, Obstructions to extensions and homotopies, Ann. of Math. 52 (1950), 1-50.
  • [Sp1] E. Spanier, Algebraic Topology, McGraw-Hill, New York, 1966.
  • [Sp2] E. Spanier, Duality in topological manifolds, in: Colloque de Topologie Tenu à Bruxelles, Centre Belge de Recherches Mathématiques, 1966, 91-111.
  • [V] J. Vick, Homology Theory, Academic Press, New York, 1973.
  • [W1] C. T. C. Wall, Surgery of non-simply-connected manifolds, Ann. of Math. 84 (1966), 217-276.
  • [W2] C. T. C. Wall, On Poincaré complex I, Ann. of Math. 86 (1967), 213-245.
  • [Wh] G. W. Whitehead, Elements of Homotopy Theory, Springer, New York, 1978.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.bwnjournal-article-fmv153i1p1bwm
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.