ArticleOriginal scientific text

Title

Lefschetz coincidence formula on non-orientable manifolds

Authors 1, 2

Affiliations

  1. Department of Mathematics-IME, University of São Paulo, Caixa Postal 66.281-AG. Cidade de São Paulo, 05389-970 São Paulo, Brasil
  2. Department of Mathematics, University of Agriculture, Nowoursynowska 166, 02 766 Warszawa, Poland

Abstract

We generalize the Lefschetz coincidence theorem to non-oriented manifolds. We use (co-) homology groups with local coefficients. This generalization requires the assumption that one of the considered maps is orientation true.

Bibliography

  1. [Bd] G. Bredon, Geometry and Topology, Grad. Texts in Math. 139, Springer, New York, 1993.
  2. [B] R. F. Brown, The Lefschetz Fixed Point Theorem, Scott, Foresman and Co., New York, 1971.
  3. [BS] R. F. Brown and H. Schirmer, Nielsen coincidence theory and coincidence producing maps for manifolds with boundary, Topology Appl. 46 (1992), 65-79.
  4. [DJ] R. Dobreńko and J. Jezierski, The coincidence Nielsen theory on non-orientable manifolds, Rocky Mountain J. Math. 23 (1993), 67-85.
  5. [FH] E. Fadell and S. Husseini, Fixed point theory for non-simply connected manifolds, Topology 30 (1981), 53-92.
  6. [G1] D. L. Gonçalves, Indices for coincidence classes and the Lefschetz formula for non-orientable manifolds, preprint, Mathematisches Institut, Universität Heidelberg.
  7. [G2] D. L. Gonçalves, Coincidence theory for maps from a complex into a manifold, preprint.
  8. [GO] D. L. Gonçalves and E. Oliveira, The Lefschetz coincidence numbers for maps on compact surfaces, preprint, Department of Mathematics, UFSCAR, S ao Carlos.
  9. [Je] J. Jezierski, The Nielsen coincidence theory on topological manifolds, Fund. Math. 143 (1993), 167-178.
  10. [Ji] B. Jiang, Lectures on the Nielsen Fixed Point Theory, Contemp. Math. 14, Amer. Math. Soc., Providence, 1983.
  11. [M] K. Mukherjea, Coincidence theory for manifolds with boundary, Topology Appl. 46 (1992), 23-39.
  12. [O] P. Olum, Obstructions to extensions and homotopies, Ann. of Math. 52 (1950), 1-50.
  13. [Sp1] E. Spanier, Algebraic Topology, McGraw-Hill, New York, 1966.
  14. [Sp2] E. Spanier, Duality in topological manifolds, in: Colloque de Topologie Tenu à Bruxelles, Centre Belge de Recherches Mathématiques, 1966, 91-111.
  15. [V] J. Vick, Homology Theory, Academic Press, New York, 1973.
  16. [W1] C. T. C. Wall, Surgery of non-simply-connected manifolds, Ann. of Math. 84 (1966), 217-276.
  17. [W2] C. T. C. Wall, On Poincaré complex I, Ann. of Math. 86 (1967), 213-245.
  18. [Wh] G. W. Whitehead, Elements of Homotopy Theory, Springer, New York, 1978.
Pages:
1-23
Main language of publication
English
Received
1995-04-28
Accepted
1996-04-25
Published
1997
Exact and natural sciences