ArticleOriginal scientific text
Title
A partial order where all monotone maps are definable
Authors 1, 2, 3
Affiliations
- Technische Universität, Wiedner Hauptstrasse 8-10/118.2, A-1040 Wien, Austria
- Current address: Mathematik WE 2 Freie Universität Arnimallee 3 D-14195 Berlin
- Hebrew University of Jerusalem, Givat Ram, 91094 Jerusalem, Israel
Abstract
It is consistent that there is a partial order (P,≤) of size such that every monotone function f:P → P is first order definable in (P,≤).
Bibliography
- [KS] H. Kaiser and N. Sauer, Order polynomially complete lattices, Algebra Universalis 130 (1993), 171-176.
- [Sh 128] S. Shelah, Uncountable constructions for B.A., e.c. groups and Banach spaces, Israel J. Math. 51 (1985), 273-297.
- [Sh 136] S. Shelah, Constructions of many complicated uncountable structures and Boolean algebras, Israel J. Math. 45 (1983), 100-146.