ArticleOriginal scientific text

Title

Combinatorics of open covers (III): games, Cp (X)

Authors 1

Affiliations

  1. Department of Mathematics, Boise State University, Boise, Idaho 83725, U.S.A.

Abstract

Some of the covering properties of spaces as defined in Parts I and II are here characterized by games. These results, applied to function spaces Cp(X) of countable tightness, give new characterizations of countable fan tightness and countable strong fan tightness. In particular, each of these properties is characterized by a Ramseyan theorem.

Keywords

Rothberger property, Menger property, ω-cover, S1(Ω,Ω), Sf(Ω,Ω), Cp(X), countable fan tightness, countable strong fan tightness, infinite games

Bibliography

  1. [1] A. V. Arkhangel'skiĭ, Hurewicz spaces, analytic sets and fan tightness of function spaces, Soviet Math. Dokl. 33 (1986), 396-399.
  2. [2] A. V. Arkhangel'skiĭ, Topological Function Spaces, Kluwer, 1992.
  3. [3] J. E. Baumgartner and A. D. Taylor, Partition theorems and ultrafilters, Trans. Amer. Math. Soc. 241 (1978), 283-309.
  4. [4] A. Blass, Ultrafilter mappings and their Dedekind cuts, Trans. Amer. Math. Soc. 188 (1974), 327-340.
  5. [5] D. Booth, Ultrafilters on a countable set, Ann. Math. Logic 2 (1970-71), 1-24.
  6. [6] P. Erdős, A. Hajnal and R. Rado, Partition relations for cardinal numbers, Acta Math. Acad. Sci. Hungar. 16 (1965), 93-196.
  7. [7]G F. Galvin, Indeterminacy of point-open games, Bull. Acad. Polon. Sci. Sér. Sci. Math. Astronom. Phys. 26 (1978), 445-448.
  8. [8] J. Gerlits and Zs. Nagy, Some properties of C(X) I, Topology Appl. 14 (1982), 151-161.
  9. [9] S. Grigorieff, Combinatorics on ideals and forcing, Ann. Math. Logic 3 (1971), 363-394.
  10. [10]H W. Hurewicz, Über eine Verallgemeinerung des Borelschen Theorems, Math. Z. 24 (1925), 401-421.
  11. [11] W. Just, A. W. Miller, M. Scheepers and P. J. Szeptycki, The combinatorics of open covers II, Topology Appl. 73 (1996), 241-266.
  12. [12] J. Ketonen, On the existence of P-points, Fund. Math. 92 (1976), 91-94.
  13. [13] K. Kunen, Some points in βN, Math. Proc. Cambridge Philos. Soc. 80 (1976), 385-398.
  14. [14] C. Laflamme, Filter games and combinatorial properties of strategies, in: Contemp. Math. 192, Amer. Math. Soc., 1996, 51-67.
  15. [15] A. R. D. Mathias, Happy families, Ann. Math. Logic 12 (1977), 59-111.
  16. [16] K. Menger, Einige Überdeckungssätze der Punktmengenlehre, Sitzungsber. Wien Abt. 2a Math. Astronom. Phys. Meteorol. Mech. 133 (1924), 421-444.
  17. [17]P J. Pawlikowski, Undetermined sets of point-open games, Fund. Math. 144 (1994), 279-285.
  18. [18] F. Rothberger, Eine Verschärfung der Eigenschaft C, Fund. Math. 30 (1938), 50-55.
  19. [19] M. Sakai, Property C'' and function spaces, Proc. Amer. Math. Soc. 104 (1988), 917-919.
  20. [20] M. Scheepers, Combinatorics of open covers I: Ramsey theory, Topology Appl. 69 (1996), 31-62.
  21. [21] M. Scheepers, Open covers and the square bracket partition relation, Proc. Amer. Math. Soc., to appear.
  22. [22] S. Shelah, Proper Forcing, Springer, 1982.
  23. [23] R. Telgársky, On games of Topsœ, Math. Scand. 54 (1984), 170-176.
Pages:
231-254
Main language of publication
English
Received
1996-01-10
Accepted
1996-10-30
Published
1997
Exact and natural sciences