ArticleOriginal scientific text

Title

Connected covers and Neisendorfer's localization theorem

Authors 1, 2

Affiliations

  1. Mathematics Department, Wayne State University, Detroit, Michigan 48202, U.S.A.
  2. Matematisk Institut, Københavns Universitet, Universitetsparken 5, DK-2100 København Ø, Denmark

Abstract

Our point of departure is J. Neisendorfer's localization theorem which reveals a subtle connection between some simply connected finite complexes and their connected covers. We show that even though the connected covers do not forget that they came from a finite complex their homotopy-theoretic properties are drastically different from those of finite complexes. For instance, connected covers of finite complexes may have uncountable genus or nontrivial SNT sets, their Lusternik-Schnirelmann category may be infinite, and they may serve as domains for nontrivial phantom maps.

Bibliography

  1. J. F. Adams and N. J. Kuhn, Atomic spaces and spectra, Proc. Edinburgh Math. Soc. 32 (1989), 473-481.
  2. A. K. Bousfield, Localization and periodicity in unstable homotopy theory, J. Amer. Math. Soc. 7 (1994), 831-873.
  3. A. K. Bousfield and D. M. Kan, Homotopy Limits, Completions and Localizations, Lecture Notes in Math. 304, Springer, Berlin, 1972.
  4. C. Casacuberta, Recent advances in unstable localization, in: CRM Proc. Lecture Notes 6, Amer. Math. Soc., 1994, 1-22.
  5. F. R. Cohen, J. C. Moore and J. A. Neisendorfer, Torsion in homotopy groups, Ann. of Math. 109 (1979), 121-168.
  6. F. R. Cohen, J. C. Moore and J. A. Neisendorfer, The double suspension and exponents of the homotopy groups of spheres, Ann. of Math. 110 (1979), 549-565.
  7. A. Dold, Relations between ordinary and extraordinary homology, in: J. F. Adams, Algebraic Topology - A Student's Guide, London Math. Soc. Lecture Note Ser. 4, Cambridge Univ. Press, London, 1972, 167-177.
  8. E. Dror Farjoun, Homotopy localization and v1-periodic spaces, in: Lecture Notes in Math. 1509, Springer, 1991, 104-113.
  9. E. Dror Farjoun, Localizations, fibrations and conic structures, preprint, Hopf Topology Archive, 1992.
  10. E. Dyer and J. Roitberg, Note on sequences of Mayer-Vietoris type, Proc. Amer. Math. Soc. 80 (1980), 660-662.
  11. B. Gray and C. A. McGibbon, Universal phantom maps, Topology 32 (1993), 371-394.
  12. I. M. James, Lusternik-Schnirelmann category, in: Handbook of Algebraic Topology, I. M. James (ed.), North-Holland, 1995, Chapter 27.
  13. M. J. Hopkins and D. C. Ravenel, Suspension spectra are harmonic, Bol. Soc. Mat. Mexicana (2) 37 (1992), 271-279.
  14. M. J. Hopkins, D. C. Ravenel and W. S. Wilson, Morava Hopf algebras and spaces K(n) equivalent to finite Postnikov systems, preprint, Hopf Topology Archive, 1994.
  15. J. Lannes et L. Schwartz, A propos de conjectures de Serre et Sullivan, Invent. Math. 83 (1986), 593-603.
  16. C. A. McGibbon, The Mislin genus of a space, in: CRM Proc. Lecture Notes 6, Amer. Math. Soc., 1994, 75-102.
  17. C. A. McGibbon, Phantom maps, in: Handbook of Algebraic Topology, I. M. James (ed.), North-Holland, 1995, Chapter 25.
  18. C. A. McGibbon, Infinite loop spaces and Neisendorfer localization, Proc. Amer. Math. Soc., to appear.
  19. C. A. McGibbon and J. M. Møller, On spaces of the same n-type for all n, Topology 31 (1992), 177-201.
  20. C. A. McGibbon and C. W. Wilkerson, Loop spaces of finite complexes at large primes, Proc. Amer. Math. Soc. 96 (1986), 698-702.
  21. H. Miller, The Sullivan fixed point conjecture on maps from classifying spaces, Ann. of Math. 120 (1984), 39-87.
  22. J. M. Møller, The normalizer of the Weyl group, Math. Ann. 294 (1992), 59-80.
  23. J. A. Neisendorfer, Localization and connected covers of finite complexes, in: Contemp. Math. 181, Amer. Math. Soc., 1995, 385-390.
  24. J. A. Neisendorfer and P. S. Selick, Some examples of spaces with or without exponents, in: CMS Conf. Proc. 2, Part 1, Amer. Math. Soc., 1982, 343-357.
  25. D. C. Ravenel and W. S. Wilson, The Morava K-theories of Eilenberg-MacLane spaces and the Conner-Floyd conjecture, Amer. J. Math. 102 (1980), 691-748.
  26. D. Rector, Loop structures on the homotopy type of S3, in: Lecture Notes in Math. 249, Springer, 1971, 99-105.
  27. J. D. Stasheff, H-spaces from a Homotopy Point of View, Lecture Notes in Math. 161, Springer, Berlin, 1970.
  28. D. Sullivan, The genetics of homotopy theory and the Adams conjecture, Ann. of Math. 100 (1974), 1-79.
  29. C. W. Wilkerson, Classification of spaces of the same n-type for all n, Proc. Amer. Math. Soc. 60 (1976), 279-285.
  30. C. W. Wilkerson, Applications of minimal simplicial groups, Topology 15 (1976), 111-130.
  31. A. Zabrodsky, Hopf Spaces, North-Holland Math. Stud. 22, North-Holland, Amsterdam, 1976.
  32. A. Zabrodsky, On phantom maps and a theorem of H. Miller, Israel J. Math. 58 (1987), 129-143.
Pages:
211-230
Main language of publication
English
Received
1996-06-24
Accepted
1996-12-02
Published
1997
Exact and natural sciences