ArticleOriginal scientific text

Title

Partition properties of ω1 compatible with CH

Authors 1, 2, 3

Affiliations

  1. Department of Mathematics, Ben Gurion University, Beer Sheva, Israel
  2. Department of Mathematics, University of Toronto, Toronto, Canada M5S 3G3
  3. Matematicki Institut, Kneza Mihaila 35, 11000 Beograd, Yugoslavia

Abstract

A combinatorial statement concerning ideals of countable subsets of ω is introduced and proved to be consistent with the Continuum Hypothesis. This statement implies the Suslin Hypothesis, that all (ω, ω*)-gaps are Hausdorff, and that every coherent sequence on ω either almost includes or is orthogonal to some uncountable subset of ω.

Bibliography

  1. U. Abraham, K. J. Devlin and S. Shelah, The consistency with CH of some consequences of Martin's axiom plus non-CH, Israel J. Math. 31 (1978), 19-33.
  2. W. W. Comfort and S. Negrepontis, The Theory of Ultrafilters, Springer, Berlin, 1974.
  3. H. G. Dales and W. H. Woodin, An Introduction to Independence for Analysts, London Math. Soc. Lecture Note Ser. 115, Cambridge University Press, 1987.
  4. K. J. Devlin and H. Johnsbraten, The Souslin Problem, Lecture Notes in Math. 405, Springer, 1974.
  5. A. Dow, PFA and ω*, Topology Appl. 28 (1988), 127-140.
  6. F. Galvin, On Gruenhage's generalization of first countable spaces II, Notices Amer. Math. Soc. 24 (1977), A-257.
  7. F. Galvin, letters of November 12, 1980 and May 18, 1981.
  8. F. Hausdorff, Die Graduierung nach dem Endverlauf, Abh. König. Sächs. Gesell. Wiss. Math.-Phys. Kl. 31 (1909), 296-334.
  9. F. Hausdorff, Summen von 1 Mengen, Fund. Math. 26 (1936), 241-255.
  10. K. Kunen, (κ,λ*) gaps under MA, note of August 1976.
  11. M. Magidor and J. Malitz, Compact extensions of L(Q), Ann. Math. Logic 11 (1977), 217-261.
  12. J. van Mill and G. M. Reed, Open Problems in Topology, North-Holland, Amsterdam, 1990.
  13. A. Ostaszewski, On countably compact perfectly normal spaces, J. London Math. Soc. (2) 14 (1976), 505-516.
  14. S. Shelah, Proper Forcing, Lecture Notes in Math. 940, Springer, 1982.
  15. S. Todorčević, Forcing positive partition relations, Trans. Amer. Math. Soc. 280 (1983), 703-720.
  16. S. Todorčević, Partitioning pairs of countable ordinals, Acta Math. 159 (1987), 261-294.
  17. S. Todorčević, Partition Problems in Topology, Contemp. Math. 84, Amer. Math. Soc., Providence, 1989.
  18. S. Todorčević, Some applications of S and L combinatorics, Ann. New York Acad. Sci. 705 (1993), 130-167.
  19. N. M. Warren, Properties of Stone-Čech compactifications of discrete spaces, Proc. Amer. Math. Soc. 33 (1972), 599-606.
Pages:
165-181
Main language of publication
English
Received
1996-06-30
Published
1997
Exact and natural sciences