Pełnotekstowe zasoby PLDML oraz innych baz dziedzinowych są już dostępne w nowej Bibliotece Nauki.
Zapraszamy na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
1997 | 152 | 1 | 75-95

Tytuł artykułu

On infinite partitions of lines and space

Treść / Zawartość

Języki publikacji

EN

Abstrakty

EN
Given a partition P:L → ω of the lines in $ℝ^n$, n ≥ 2, into countably many pieces, we ask if it is possible to find a partition of the points, $Q:ℝ^n → ω$, so that each line meets at most m points of its color. Assuming Martin's Axiom, we show this is the case for m ≥ 3. We reduce the problem for m = 2 to a purely finitary geometry problem. Although we have established a very similar, but somewhat simpler, version of the geometry conjecture, we leave the general problem open. We consider also various generalizations of these results, including to higher dimension spaces and planes.

Rocznik

Tom

152

Numer

1

Strony

75-95

Daty

wydano
1997
otrzymano
1996-06-27

Twórcy

autor
  • Mathematical Institute, Hungarian Academy of Sciences, Reáltanoda U. 13-15, H-1053 Budapest, Hungary
  • Department of Mathematics, University of North Texas, Denton, Texas 76203-5116, U.S.A.
  • Department of Mathematics, University of North Texas, Denton, Texas 76203-5116, U.S.A.

Bibliografia

  • [1] R. Davies, On a denumerable partition problem of Erdős, Proc. Cambridge Philos. Soc. 59 (1963), 33-36.
  • [2] P. Erdős, S. Jackson and R. D. Mauldin, On partitions of lines and space, Fund. Math. 145 (1994), 101-119.
  • [3] S. Jackson and R. D. Mauldin, Set Theory and Geometry, to appear.
  • [4] T. Jech, Set Theory, Academic Press, 1978.
  • [5] K. Kunen, Set Theory, an Introduction to Independence Proofs, North-Holland, 1980.
  • [6] S. Todorčević, Partitioning pairs of countable ordinals, Acta Math. 159 (1987), 261-294.

Identyfikator YADDA

bwmeta1.element.bwnjournal-article-fmv152i1p75bwm