ArticleOriginal scientific text
Title
The homotopy groups of the L2 -localization of a certain type one finite complex at the prime 3
Authors 1, 2
Affiliations
- Yoshitaka Nakazawa, 1-22-7, Omokage, Tottori, 680, Japan
- Katsumi Shimomura, Faculty of Education, Tottori University, Tottori, 680, Japan
Abstract
For the Brown-Peterson spectrum BP at the prime 3, denotes Hazewinkel's second polynomial generator of . Let denote the Bousfield localization functor with respect to . A typical example of type one finite spectra is the mod 3 Moore spectrum M. In this paper, we determine the homotopy groups for the 8 skeleton X of BP.
Bibliography
- Y. Arita and K. Shimomura, The chromatic
-term at the prime 3, Hiroshima Math. J. 26 (1996), 415-431. - M. J. Hopkins and B. H. Gross, The rigid analytic period mapping, Lubin-Tate space, and stable homotopy theory, Bull. Amer. Math. Soc. 30 (1994), 76-86.
- M. Mahowald and K. Shimomura, The Adams-Novikov spectral sequence for the
-localization of a -spectrum, in: Contemp. Math. 146, Amer. Math. Soc., 1993, 237-250. - H. R. Miller, D. C. Ravenel, and W. S. Wilson, Periodic phenomena in Adams-Novikov spectral sequence, Ann. of Math. 106 (1977), 469-516.
- D. C. Ravenel, Complex Cobordism and Stable Homotopy Groups of Spheres, Academic Press, 1986.
- D. C. Ravenel, Nilpotence and Periodicity in Stable Homotopy Theory, Ann. of Math. Stud. 128, Princeton Univ. Press, 1992.
- K. Shimomura, On the Adams-Novikov spectral sequence and products of β-elements, Hiroshima Math. J. 16 (1986), 209-224.
- K. Shimomura, The homotopy groups of the
-localized Mahowald spectrum X⟨1⟩, Forum Math. 7 (1995), 685-707. - K. Shimomura, The homotopy groups of the
-localized Toda-Smith spectrum V(1) at the prime 3, Trans. Amer. Math. Soc., to appear. - K. Shimomura and H. Tamura, Non-triviality of some compositions of β-elements in the stable homotopy of Moore spaces, Hiroshima Math. J. 16 (1986), 121-133.
- K. Shimomura and A. Yabe, The homotopy groups
, Topology 34 (1995), 261-289.