ArticleOriginal scientific text

Title

Embedding partially ordered sets into ^ωω

Authors 1

Affiliations

  1. Department of Mathematics, 100 St. George Street, University of Toronto, Toronto, Ontario, Canada M5S 3G3

Abstract

We investigate some natural questions about the class of posets which can be embedded into ⟨ω,≤*⟩. Our main tool is a simple ccc forcing notion HE which generically embeds a given poset E into ⟨ω,≤*⟩ and does this in a "minimal" way (see Theorems 9.1, 10.1, 6.1 and 9.2).

Bibliography

  1. B. Balcar, T. Jech and J. Zapletal, Semicohen Boolean algebras, preprint, 1995.
  2. J. Baumgartner and R. Laver, Iterated perfect-set forcing, Ann. Math. Logic 17 (1979), 271-288.
  3. J. Brendle and T. LaBerge, Forcing tightness in products, preprint, 1994.
  4. M. Burke, Notes on embedding partially ordered sets into ⟨ω,<*⟩, preprint, 1995.
  5. J. Cummings, M. Scheepers and S. Shelah, Type rings, to appear.
  6. H. G. Dales and W. H. Woodin, An Introduction to Independence for Analysts, London Math. Soc. Lecture Note Ser. 115, Cambridge University Press, 1987.
  7. P. L. Dordal, Towers in [ω]ω and ω, Ann. Pure Appl. Logic 45 (1989), 247-277.
  8. W. B. Easton, Powers of regular cardinals, Ann. Math. Logic 1 (1970), 139-178.
  9. P. Erdős, A. Hajnal, A. Maté and R. Rado, Combinatorial Set Theory - Parti- tion Relations for Cardinals, North-Holland, 1984.
  10. F. Galvin, Letter of August 3, 1995.
  11. F. Galvin, Letter of August 5, 1995.
  12. F. Hausdorff, Die Graduierung nach dem Endverlauf, Abh. Königl. Sächs. Gesell. Wiss. Math.-Phys. Kl. 31 (1909), 296-334.
  13. S. Hechler, On the existence of certain cofinal subsets of ω, in: Proc. Sympos. Pure Math. 13, Amer. Math. Soc., 1974, 155-173.
  14. S. Koppelberg and S. Shelah, Subalgebras of Cohen algebras need not be Cohen, preprint, 1995.
  15. D. W. Kueker, Countable approximations and Löwenheim-Skolem theorems, Ann. Math. Logic 11 (1977), 77-103.
  16. K. Kunen, Inaccessibility properties of cardinals, Ph.D. thesis, Stanford University, 1968.
  17. K. Kunen, ⟨κ,λ*⟩-gaps under MA, preprint, 1976.
  18. K. Kunen, Set Theory - An Introduction to Independence Proofs, North-Holland, 1980.
  19. G. Kurepa, L'hypothèse du continu et le problème de Souslin, Publ. Inst. Math. Belgrade 2 (1948), 26-36.
  20. R. Laver, Linear orderings in ω under eventual dominance, in: Logic Colloquium '78, North-Holland, 1979, 299-302.
  21. J. C. Oxtoby, Measure and Category, Springer, 1970.
  22. K. Prikry, Changing measurable into accessible cardinals, Dissertationes Math. (Rozprawy Mat.) 68 (1970).
  23. F. Rothberger, Sur les familles indénombrables de suites de nombres naturels et les problèmes concernant la propriété C, Proc. Cambridge Philos. Soc. 37 (1941), 109-126.
  24. M. Scheepers, Gaps in ω, in: Israel Math. Conf. Proc. 6, Amer. Math. Soc., 1993, 439-561.
  25. M. Scheepers, Cardinals of countable cofinality and eventual domination, Order 11 (1995), 221-235.
  26. M. Scheepers, The Boise problem book, http://www.unipissing.ca/topology/.
  27. R. Solovay, Discontinuous homomorphisms of Banach algebras, preprint, 1976.
  28. S. Todorčević, Special square sequences, Proc. Amer. Math. Soc. 105 (1989), 199-205.
  29. S. Todorčević and I. Farah, Some Applications of the Method of Forcing, Mathematical Institute, Belgrade, and Yenisei, Moscow, 1995.
Pages:
53-95
Main language of publication
English
Received
1995-11-15
Published
1996
Exact and natural sciences