ArticleOriginal scientific text

Title

An extension of a theorem of Marcinkiewicz and Zygmund on differentiability

Authors 1, 1

Affiliations

  1. Department of Mathematics The University of Burdwan Burdwan, 713104, India

Abstract

Let f be a measurable function such that Δk(x,h;f)=O(|h|λ) at each point x of a set E, where k is a positive integer, λ > 0 and Δk(x,h;f) is the symmetric difference of f at x of order k. Marcinkiewicz and Zygmund [5] proved that if λ = k and if E is measurable then the Peano derivative f(k) exists a.e. on E. Here we prove that if λ > k-1 then the Peano derivative f([λ]) exists a.e. on E and that the result is false if λ = k-1; it is further proved that if λ is any positive integer and if the approximate Peano derivative f(λ),a exists on E then f(λ) exists a.e. on E.

Bibliography

  1. P. S. Bullen and S. N. Mukhopadhyay, Peano derivatives and general integrals, Pacific J. Math. 47 (1973), 43-58.
  2. A. Denjoy, Sur l'intégration des coefficients différentielles d'ordre supérieur, Fund. Math. 25 (1935), 273-326.
  3. H. Fejzic and C. E. Weil, Repairing the proof of a classical differentiation result, Real Anal. Exchange 19 (1993-94), 639-643.
  4. J. Marcinkiewicz, Sur les séries de Fourier, Fund. Math. 27 (1937), 38-69.
  5. J. Marcinkiewicz and A. Zygmund, On the differentiability of functions and summability of trigonometric series, Fund. Math. 26 (1936), 1-43.
  6. S. N. Mukhopadhyay and S. Mitra, Measurability of Peano derivates and approximate Peano derivates, Real Anal. Exchange 20 (1994-95), 768-775.
  7. S. Saks, Theory of the Integral, Dover, 1964.
  8. E. M. Stein and A. Zygmund, On the differentiability of functions, Studia Math. 23 (1964), 247-283.
  9. A. Zygmund, Trigonometric Series I, II, Cambridge Univ. Press, 1968.

Additional information

http://matwbn.icm.edu.pl/ksiazki/fm/fm151/fm15112.pdf

Pages:
21-38
Main language of publication
English
Received
1995-02-16
Published
1996
Exact and natural sciences