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On Monk’s questions
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Abstract. We deal with Boolean algebras and their cardinal functions: π-weight π
and π-character πχ. We investigate the spectrum of π-weights of subalgebras of a Boolean
algebra B. Next we show that the π-character of an ultraproduct of Boolean algebras may
be different from the ultraproduct of the π-characters of the factors.

Annotated content

1. Introduction

2. Existence of subalgebras with a preassigned algebraic density. We first
note (in 2.1) that if π(B) ≥ θ = cf(θ) then for some B′ ⊆ B we have π(B′) = θ. Call this
statement (∗). Then we give a criterion for π(B) = µ > cf(µ) (in 2.2) and conclude for
singular µ that for a club of θ < µ the (∗) above holds (2.2A), and investigate the criterion
(in 2.3). Our main aim is, starting with µ = µ<µ, cf(λ) < λ, to force the existence of
a Boolean algebra B such that π(B) > θ but for no B′ ⊆ B do we have π(B′) = λ
(in fact (∃B′ ⊆ B)[π(B′) = θ ⇔ θ = cf(θ) ∨ cf(θ) ≤ µ] for every θ ≤ |B|). Toward
this, we define the forcing (Definition 2.5: a condition p tells us how 〈xα : α ∈ W p〉
generate a Boolean algebra, BA[p],W p ∈ [λ]<µ with xα > θ having no non-zero member
of 〈xβ : β ∈W p∩α〉BA[p] below it). We prove the expected properties of the generic (2.6),
also the forcing has the expected properties (µ-complete, µ+-c.c.) (in 2.7). The main
theorem (2.9) stated, the main point being that if µ < cf(θ) < θ for B ⊆ BA[G], then
π(B) 6= θ; we use the above criterion, and a lemma related to ∆-systems (see [Sh 430],
6.6D, [Sh 513], 6.1) quoted in 2.4, to reduce the problem to some special amalgamation of
finitely many copies (the exact number is in relation to the arity of the term defining the
relevant elements from the xα’s). The existence of such amalgamation was done separately
earlier (2.8).

Lastly, in 2.10 we show that the cf(θ) > µ above was necessary by proving the existence
of a subalgebra with prescribed singular algebraic density λ satisfying π(B) > λ and
(∀µ < λ)[µ<cf(λ) < λ].
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3. On π and πχ of products of Boolean algebras. If e.g. ℵ0 < κ = cf(χ) <
χ < λ = cf(λ) < χκ and (∀θ < χ)[θκ < χ] we show that for some Boolean al-
gebras Bi (for i < κ), χ =

∑
i<κ

πχ(Bi) < λ and (for D a regular ultrafilter on κ)
λ = πχ(

∏
i<κ

Bi/D) but
∏
i<κ

(πχ(Bi))/D = χκ. For this we use interval Boolean alge-
bras on orders of the form λi ×Q.

We also prove for infinite Boolean algebras Bi (for i < κ) and D an ultrafilter on κ that
if ni < ℵ0 and µ =

∏
i<κ

ni/D is a regular (infinite) cardinal then πχ(
∏
i<κ

Bi/D) ≥ µ.

1. Introduction. Monk [M] asks (problems 13, 15 in his list; π is the
algebraic density, see 1.1 below): For a (Boolean algebra) B with ℵ0 ≤ θ ≤
π(B), does B have a subalgebra B′ with π(B′) = θ?

If θ is regular the answer is easily seen to be positive (see 2.1). We show
that in general it may be negative (see 2.9(3)), but for quite many singular
cardinals, it is positive (2.10); the theorems are quite complementary. This
is dealt with in §2.

In §3 we mainly deal with πχ (see Definition 3.2) and show that the πχ
of an ultraproduct of Boolean algebras is not necessarily the ultraproduct
of the πχ’s. Note that in Koppelberg–Shelah [KpSh 415], Theorem 1.1, we
prove that if SCH holds and π(Bi) > 2κ for i < κ then

π
(∏

i<κ

Bi/D
)

=
∏

i<κ

(π(Bi))/D.

We also prove that for infinite Boolean algebras Ai (i < κ) and a non-
principal ultrafilter D on κ, if ni < ℵ0 for i < κ and µ :=

∏
i<κ ni/D is

regular, then πχ(A) ≥ µ. Here A :=
∏
i<κAi/D. By a theorem of Peterson

[P] the regularity of µ is necessary.

1.1. Notation. Boolean algebras are denoted by B and sometimes A.
For a Boolean algebra B, set

B+ := {x ∈ B : x 6= 0},
π(B) := min{|X| : X ⊆ B+ is such that (∀y ∈ B+)(∃x ∈ X)[x ≤ y]}.

X like that is called dense in B. More generally, if X,Y ⊆ B we say X is
dense in Y if y ∈ Y & y 6= 0⇒ (∃x ∈ X)[0 < x ≤ y]. For a Y ⊆ B, 〈Y 〉B is
the subalgebra of B which Y generates.

0A is the constant function with domain A and value zero. 1A is defined
similarly.

2. Existence of subalgebras with a preassigned algebraic density

2.1. Observation. If π(B) > θ = cf(θ) ≥ |Y |+ ℵ0 and Y ⊆ B then for
some subalgebra A of B, Y ⊆ A, π(A) = θ and |A| = θ.

P r o o f. Without loss of generality |Y | = θ. Let Y = {yα : α < θ}. Choose
by induction on α ≤ θ subalgebras Aα of B, increasing continuously in α,
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with |Aα| < θ and yα ∈ Aα+1, such that for each α < θ, some xα ∈ A+
α+1

is not above any y ∈ A+
α . This is possible because for no α < θ can A+

α be
dense in B. Now A = Aθ is as required. 2.1

2.2. Claim. Assume B is a Boolean algebra with π(B) = µ > cf(µ) ≥ ℵ0

(see Notation 1.1). Then for arbitrarily large regular θ < µ,

(∗)Bθ for some set Y we have:

(∗)Bθ [Y ] Y ⊆ B+, |Y | = θ, and there is no Z ⊆ B+of cardinality
< θ, dense in Y (i.e. (∀y ∈ Y )(∃z ∈ Z)[z ≤ y]).

2.2A. Conclusion. If B is a Boolean algebra, π(B) = µ > cf(µ) > ℵ0

and 〈µζ : ζ < cf(µ)〉 is increasing continuously with limit µ (so µζ < µ),
then for some club C of cf(µ), for every ζ ∈ C, for some B′ζ ⊆ B we have
π(B′ζ) = µζ .

P r o o f o f 2.2. Let Z∗ ⊆ B+ be dense with |Z∗| = µ. If the conclusion
fails, then for some θ∗ < µ, for no regular θ ∈ (θ∗, µ) does (∗)Bθ hold. We
now assume we chose such a θ∗, and show by induction on λ ≤ µ that

(⊗λ) if Y ⊆ B+ and |Y | ≤ λ, then for some Z ⊆ B+, |Z| ≤ θ∗ and Z is
dense in Y .

C a s e 1: λ ≤ θ∗. Let Z = Y .
C a s e 2: θ∗ < λ ≤ µ and cf(λ) < λ. Let Y =

⋃{Yζ : ζ < cf(λ)},
|Yζ | < λ. By the induction hypothesis for each ζ < cf(λ) there is Zζ ⊆ B+

of cardinality ≤ θ∗ which is dense in Yζ .
Now Z ′ :=

⋃
ζ<cf(λ) Zζ has cardinality ≤ θ∗ + cf(λ) < λ, hence by the

induction hypothesis there is Z ⊆ B+ dense in Z ′ with |Z| ≤ θ∗. Clearly Z
is dense in Y , |Z| ≤ θ∗ and Z ⊆ B+ so we finish the case.

C a s e 3: θ∗ < λ ≤ µ, λ regular. If for this Y , (∗)Bλ [Y ] holds, we get
the conclusion of the claim. We are assuming not so; so there is Z ′ ⊆ B+

dense in Y with |Z ′| < λ. Apply the induction hypothesis to Z ′ and get Z
as required.

So we have proved (⊗λ).
We apply (⊗λ) to λ = µ, Y = Z∗ and get a contradiction. 2.2

2.3. Claim. (1) If B, µ, θ, Y are as in 2.2 (so (∗)Bθ [Y ] holds and θ is
regular) then we can find y = 〈yα : α < θ〉 whose range is contained in B+,
and a proper θ-complete filter D on θ containing all cobounded subsets of θ
such that

(⊗Bȳ,D) for every z ∈ B+, {α < θ : z ≤ yα} = ∅ mod D.
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(2) If in addition θ is a successor cardinal (1) then we can demand that
D is normal.

R e m a r k. Part (2) is for curiosity only.

P r o o f. (1) Let Y = {yα : α < θ}. Define D as follows: for U ⊆ θ,
U ∈ D iff for some 0 < ζ < θ and zε ∈ B+ for ε < ζ,

we have U ⊇ {α < θ : (∀ε < ζ)[zε � yα]}.
Trivially D is closed under supersets and intersections of < θ members and
every cobounded subset of θ belongs to it. Now ∅ 6∈ D because (∗)Bθ [Y ].

(2) Let θ = σ+. Assume there are no such y, D. We try to choose by
induction on n < ω, Y nα (α < θ) and club En of θ such that:

(a) Y nα is a subset of B+ of cardinality < θ, increasing continuous in α,
(b) Y nα ⊆ Y n+1

α ,
(c) Y 0

α = {yβ : β < α} (where {yα : α < θ} are taken from part (1)),
(d) En is a club of θ, En+1 ⊆ En, E0 = {δ < θ : δ divisible by σ},
(e) if δ ∈ En+1 and δ ≤ α < min(En\(δ + 1)) then for every y ∈ Y nα

there is z ∈ Y n+1
δ with z ≤ y.

If we succeed, let β∗ =
⋃
n<ω min(En) (< θ), and we shall prove that⋃

n<ω Y
n
β∗ is dense in Y , getting a contradiction. For every y ∈ ⋃n<ω, α<θ Y nα

let β(y) be the minimal β < θ such that (∃z ∈ ⋃n<ω Y nβ )[z ≤ y]. Now
β is well defined as y ∈ ⋃β<θ

⋃
n<ω Y

n
β . If β(y) ≤ β∗ for every y ∈ Y

(⊆ ⋃α<θ Y 0
α ) we are done, as 〈⋃n<ω Y nβ : β < θ〉 is increasing continuous;

assume not, so some y∗ ∈ Y =
⋃
α<θ Y

0
α exemplifies this. Now let β = β(y∗)

and let z ∈ ⋃n<ω Y nβ exemplify this. Clearly 〈sup(β ∩ En) : n < ω〉 is well
defined; clearly it is a non-increasing sequence of ordinals, hence eventually
constant, say n ≥ n∗ ⇒ sup(β ∩ En) = γ. Now, without loss of general-
ity z ∈ Y n∗β (by clause (b)); note γ ∈ En for n ≥ n∗ (hence for every n).
But by clause (e) there is z′ ∈ Y n∗+1

γ with z′ ≤ z, contradicting the choice
of β.

So we cannot carry out the construction, that is, we are stuck at some n.
Fix such an n. Let En ∪ {0} = {δε : ε < θ} (increasing with ε). Let
Y nδε+1

\Y nδε ⊆ {yεζ : ζ < σ}. For each ζ < σ, let Dζ be the normal filter
generated by the family of subsets of θ of the form {ε < θ : z � yεζ} for
z ∈ B+. If ∅ ∈ Dζ for every ζ < σ, we can define Y n+1

α and En+1, a con-
tradiction. So for some ζ, yζ := 〈yεζ : ζ < σ〉 and Dζ are as required in
(⊗Bȳζ ,Dζ ). 2.3

2.4. Claim. Suppose D is a σ-complete filter on θ, θ = cf(θ) ≥ σ > 2κ,
and for each α < θ, βα = 〈βαε : ε < κ〉 is a sequence of ordinals. Then

(1) But see the end of the paper.
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for every U ⊆ θ with U 6= ∅ mod D there are 〈β∗ε : ε < κ〉 (a sequence of
ordinals) and w ⊆ κ such that :

(a) ε ∈ κ\w ⇒ cf(β∗ε ) ≤ θ,
(b) if (∀α < σ)[|α|κ < σ] then ε ∈ κ\w ⇒ σ ≤ cf(β∗ε ),
(c) if β′ε ≤ β∗ε for all ε and [ε ∈ w ≡ β′ε = β∗ε ] then

{α ∈ U : β′ε ≤ βαε ≤ β∗ε for all ε and [ε ∈ w ≡ βαε = β∗ε ]} 6= ∅ mod D.

P r o o f. [Sh 430], 6.1D, and better presented in [Sh 513], 6.1.

2.5. Definition. (1) If F ⊆ w2 let

c`(F ) = {g∈w2 : for every finite u⊆w and some f ∈F we have g¹u= f¹u}.
If f ∈ w2, w ⊆ Ord and α ∈ Ord let f [α] be (f¹(w∩α))∪0w\α; let f [∞] = f .

(2) Let µ = µ<µ < λ. We define a forcing notion Q = Qλ,µ:

(a) the members are pairs p = (w,F ) = (wp, F p), w ⊆ λ, |w| < µ,
and F is a family of < µ functions from w to {0, 1} satisfying
(α) for every α ∈ w and some f ∈ F , f(α) = 1,
(β) if f ∈ F and α ∈ w then f [α] ∈ F ,

(b) the order: p ≤ q iff wp ⊆ wq and
(α) f ∈ F q ⇒ f¹wp ∈ c`(F p),
(β) (∀f ∈ F p)(∃g ∈ F q)[f ⊆ g].

(3) For w ⊆ λ and F ⊆ w2 let BA[w,F ] = BA[(w,F )] be the Boolean
algebra freely generated by {xα : α ∈ w} except that if u and v are finite
subsets of w and 1u ∪ 0v ⊆ f for no f ∈ F , then

⋂
α∈u xα −

⋃
β∈v xβ = 0.

(4) If G ⊆ Qλ,µ is generic over V then BA[G] is
⋃
p∈G BA[p] (see 2.6(2),

(3) below). Here BA[p] := BA[wp, F p].

2.6. Claim. (0) For p ∈ Qλ,µ, BA[p] is a Boolean algebra; also for f ∈ F p
and ordinal α (or ∞) we have f [α] ∈ F p.

(1) If f ∈ F p and p ∈ Qλ,µ then f induces a homomorphism fhom from
BA[p] to the two-member Boolean algebra {0, 1}. In fact , for a term τ in
{xα : α ∈ wp}, BA[p] |= “τ 6= 0” iff for some f ∈ F p, fhom(τ) = 1.

(2) If p ≤ q then BA[p] is a Boolean subalgebra of BA[q].
(3) Hence BA[

˜
G] is well defined , p ° “BA[p] is a Boolean subalgebra of

BA[
˜
G]”.
(4) For p ∈ Qλ,µ and α ∈ wp, xα is a non-zero element which is not in

the subalgebra generated by {xβ : β < α} nor is there below it a non-zero
member of 〈xβ : β < α〉BA[p].

P r o o f. Part (0) should be clear, and also part (1). Now part (2) follows
by 2.5(2)(b) and the definition of BA[p]; so (3) should become clear. Lastly,
concerning part (4), xα is a non-zero member of BA[p] by clause (α) of
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2.5(2)(a). For α ∈ wp, by 2.5(2)(a)(α) there is f1 ∈ F p with f1(α) = 1, and
by 2.5(2)(a)(β) there is f0 ∈ F p with f0(α) = 0, f0¹(w ∩ α) = f1¹(w ∩ α);
together with part (1) this proves the second phrase of part (4). As for the
third phrase, let τ be a non-zero element of the subalgebra generated by
{xβ : β < α}, so for some f ∈ F p, fhom(τ) = 1. By 2.5(2)(a)(β), letting
f1 = f [α], we have f1(α) = 0 and f1 ∈ F p and f1¹(w ∩ α) ⊆ f . Hence
fhom

1 (τ) = fhom(τ) = 1 and f1(α) = 0, hence fhom
1 (xα) = 0. This proves

BA[p] |= “τ � xα”. 2.6

2.7. Claim. Assume µ = µ<µ < λ.

(1) Qλ,µ is a µ-complete forcing notion of cardinality ≤ λ<µ.
(2) Qλ,µ satisfies the µ+-c.c.

P r o o f. (1) The number of elements of Qλ,µ is at most

|{(w,F ) : w ⊆ λ, |w| < µ and F is a family of < µ functions

from w to {0, 1}}|
≤

∑

w⊆λ, |w|<µ
|{F : F ⊆ w2 and |F | < µ}|

≤
∑

w⊆λ, |w|<µ
(2|w|)<µ ≤ |{w : w ⊆ λ and |w| < µ}| × µ

= λ<µ + µ = λ<µ.

As for the µ-completeness, let 〈pζ : ζ < δ〉 be an increasing sequence of
members of Qλ,µ with δ < µ. Let pζ = (wζ , Fζ), let F ′ζ = c`(Fζ), let w =⋃
ζ<δ wζ and let F ′ = {f ∈ w2 : for every ζ < δ we have f¹wζ ∈ F ′ζ}.

Clearly for every ζ < δ and f ∈ Fζ there is g = gf ∈ F ′ extending f . Lastly,
let F =

{
gf : f ∈ ⋃ζ<δ Fζ

}
. Then p = (w,F ) ∈ Qλ,µ is an upper bound of

〈pζ : ζ < δ〉, as required.
(2) By the ∆-system argument it suffices to prove that p0, p1 are com-

patible when:

(a) otp(wp
0
) = otp(wp

1
) and (letting H = HOP

wp1 ,wp0 be the unique order

preserving function from wp
0

onto wp
1
),

(b) H maps p0 onto p1, i.e. f ∈ F p0 ⇔ (f ◦H−1) ∈ F p1
,

(c) α ∈ wp0 ⇒ α ≤ H(α),

(d) for α ∈ wp0
we have α ∈ wp1

iff α = H(α).

We now define q ∈ Q by setting wq = wp
0 ∪ wp1

and

F q = {(f ∪ (f ◦H))[β] : f ∈ F p1
, β ∈ wq ∪ {∞}}. 2.7
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2.8. Claim. Assume µ = µ<µ < λ. Suppose Q = Qλ,µ and :

(a) pl ∈ Q for l < m < ℵ0,

(b) otp(wp
l

) = otp(wp
0
), and Hl,k = HOP

wpl ,wpk
(see the proof of 2.7(2)),

(c) Hl,k maps pk onto pl,

(d) for α ∈ wp
0

the sequence 〈Hl,0(α) : l = 1, . . . ,m − 1〉 is either
strictly increasing or constant ; and {α, β} ⊆ wp

0
& l, k < m &

Hl,0(α) = Hk,0(β) implies α = β; lastly , letting w∗ = wp
0 ∩ wp1

we
have [l 6= k ⇒ wp

l ∩ wpk = w∗] and Hl,k¹w∗ is the identity ,

(e) τ(x1, . . . , xn) is a Boolean term, α0
i ∈ wp

0
for i ∈ {1, . . . , n}, α0

1 <
. . . < α0

n and αli = Hl,0(α0
i ),

(f) in BA[p0], τ(xα0
1
, . . . , xα0

n
) is not zero and even not in the subalgebra

generated by {xα : α ∈ w∗},
(g) m− 1 > n+ 1.

Then there is q ∈ Q such that :

(α) pl ≤ q for l < m, and wq =
⋃
l<m w

pl ,
(β) q ° “in BA[

˜
G], there is a non-zero Boolean combination τ∗ of

{τ(xαl1 , . . . , xαln) : 1 ≤ l < m} which is ≤ τ(xα0
1
, . . . , xα0

n
)”.

P r o o f. By assumption (f) (and 2.6(0), (4)) there are f∗0 , f
∗
1 ∈ c`(F p

0
)

such that:

(A) f∗0 ¹w∗ = f∗1 ¹w∗,
(B) in the two-member Boolean algebra {0, 1} we have

τ(f∗0 (α0
1), . . . , f∗0 (α0

n)) = 0, τ(f∗1 (α0
1), . . . , f∗1 (α0

n)) = 1.

Now there is γ ∈ wp0 ∪ {∞} such that (f∗0 )[γ] = f∗0 & (f∗1 )[γ] = f∗1 (e.g.
γ =∞). Choose such a (γ, f∗0 , f

∗
1 ) with γ minimal. Let wq =

⋃m−1
l=0 wp

l

. We
define a function g ∈ (wq)2 as follows:

• g¹wp0
= f∗1 ,

• for odd l ∈ [1,m), g¹wpl = f∗1 ◦H0,l, and

• for even l ∈ [1,m) (but not l = 0), g∗¹wpl = f∗0 ◦H0,l.

Now g is well defined by clause (A) above. Let us define q:

F q =
{(m−1⋃

l=0

f ◦H0,l

)[α]
: α ∈ wq ∪ {∞} and f ∈ F p0

}

∪ {g[α] : α ∈ wq ∪ {∞}},
q = (wq, F q).
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We first check that q ∈ Q. Clearly wq ∈ [λ]<µ. Also F q ⊆ (wq)2 and
|F q| < µ so we have to check the conditions (α) and (β) of Definition
2.5(2)(a):

(α) If α ∈ wq then α ∈ wpl for some l < m, so as pl ∈ Q there is fl ∈ F pl
such that fl(α) = 1. Now f0 = fl ◦H0,l for some f0 ∈ F p0

so

f :=
⋃

k<m

(f0 ◦H0,k) =
( ⋃

k<m

(f0 ◦H0,k)
)[∞]

belongs to F q and f(α) = (f0 ◦H0,l)(α) = fl(α) = 1.

(β) As for α, β ∈ w ∪ {∞} and f ∈ (wq)2 we have (f [α])[β] = f [min{α,β}]

and as
(⋃

l<m fl
)[α]

=
⋃
l<m(fl)[α], this condition holds by the way we have

defined F q.

We now check that pl ≤ q for l < m. By the choice of q clearly wp
l ⊆ wq.

Also if f ∈ F pl then f ◦Hl,0 ∈ F p0
and

⋃

k<m

((f ◦Hl,0) ◦H0,k)[∞]

belongs to F q and extends f . Lastly, if f ∈ F q we prove that f¹wpl ∈
c`(F p

l

) (in fact, ∈ F pl). Let wl := wp
l

. We have two cases: in the first case

f =
(⋃

l<m(f0 ◦H0,l)
)[α]

for some f0 ∈ F p0
; let β = min[wl ∪ {∞}\α], so

f [α]¹wl = (f0 ◦H0,l)[β]; clearly f0 ◦H0,l ∈ F pl , hence (f0 ◦H0,l)[β] ∈ F pl is
as required. The second case is f = g[α]. Let β = min[wp

l ∪ {∞}\α]; now
f¹wpl is f∗0 ◦H0,l or f∗1 ◦H0,l so f¹wpl is (f∗0 ◦H0,l)[β] or (f∗1 ◦H0,l)[β] and
hence belongs to F p

l

.
Finally, we check that there is a non-zero Boolean combination of

{τ(xαl1 , . . . , xαln) : l = 1, . . . ,m − 1} which is ≤ τ(xα0
1
, . . . , xα0

n
) in BA[q].

The required Boolean combination will be

τ∗ =
[(m−2)/2]⋂

l=0

τ(xα2l+1
1

, . . . , xα2l+1
n

)−
[(m−1)/2]⋃

l=1

τ(xα2l
1
, . . . , xα2l

n
).

So we have to prove the following two assertions.

Assertion 1. BA[q] |= “τ∗ 6= 0”.

Now g = g[∞] ∈ F q satisfies, for each l ∈ [0, [(m− 2)/2]],

ghom(τ(xα2l+1
1

, . . . , xα2l+1
n

)) = (f∗1 ◦H0,2l+1)hom(τ(xα2l+1
1

, . . . , xα2l+1
n

)) = 1;

also for each l ∈ [1, [(m− 1)/2]],

ghom(τ(xα2l
1
, . . . , xα2l

n
)) = (f∗0 ◦H0,2l)hom(τ(xα2l

1
, . . . , xα2l

n
)) = 0.

Putting the two together, we get the assertion.
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Assertion 2. BA[q] |= “τ(xα0
1
, . . . , xα0

n
) ≥ τ∗”.

So we have to prove just that

f ∈ F q ⇒ fhom(τ∗ − τ(xα0
1
, . . . , xα0

n
)) = 0.

C a s e 1: For some α ∈ wq ∪ {∞} and f0 ∈ F p0
we have

f =
( ⋃

l<m

f0 ◦H0,l

)[α]
.

Let βl = min(wp
l ∪ {∞}\α), and let γl ∈ wp0

be such that γl = H0,l(βl)
or γl = βl = ∞. Now by the assumption on 〈wpl : l < m〉, 〈γl : l < m〉 is
non-increasing. For l < m, let jl = min{j : [j = n + 1] or [j ∈ {1, . . . , n}
and α0

j ≥ γl]}. So 〈jl : l < m〉 is non-increasing and there are ≤ n + 1
possible values for each jl. But by assumption (g), m − 1 > n + 1, so for
some k, 0 < k < k + 1 < m and jk = jk+1. So (as αi1 < . . . < αin)

(∀j = 1, . . . , n)[f(xαkj ) = f(xαk+1
j

)],

hence
(∀j = 1, . . . , n)[fhom(xαkj ) = fhom(xαk+1

j
)],

hence
fhom(τ(xαk1 , . . . , xαkn)) = fhom(τ(xαk+1

1
, . . . , xαk+1

n
)),

hence (see definition of τ∗) fhom(τ∗) = 0, hence

fhom(τ∗ − τ(xα0
1
, . . . , xα0

n
)) = 0,

as required.

C a s e 2: For some α ∈ wq ∪ {∞}, f = g[α].
Let again βl = min(wp

l ∪ {∞}\α), γl = H0,l(βl) (or γl = βl =∞), and

γ′l =
{
γl if γl < γ,
∞ if γl ≥ γ,

and let jl = min{j : [j = n + 1] or [j ∈ {1, . . . , n} and α0
j ≥ γ′l ]}. So

〈γl : l < m〉 and 〈γ′l : l < m〉 are non-increasing and so is 〈jl : l < m〉. Here
γ is the ordinal we chose before defining q1, just after (B) in the proof.

If for some k, 0< k < k+1<m and jk = jk+1≤ n (hence γ′k+1≤ γ′k < γ),
then

fhom(τ∗ − τ(xα0
1
, . . . , xα0

n
)) = 0

as fhom(τ∗) = 0, which holds because

fhom(τ(xαk1 , . . . , xαkn)) = fhom(τ(xαk+1
1

, . . . , xαk+1
n

))

(the last equality holds by the choice of γ; i.e. if inequality holds then the
triple (γk, (f∗0 )[γk], (f∗1 )[γk]) contradicts the choice of γ as minimal). But
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jl (l = 1, . . . ,m − 1) is non-increasing, hence we can show inductively on
l = 1, . . . , n + 1 that jm−l ≥ l. So necessarily j1 = n + 1 but as jl is
non-increasing, clearly j0 = n+ 1 and hence

fhom(τ(xα0
1
, . . . , xα0

n
)) = g[α](τ(xα0

1
, . . . , xα0

n
)) = g(τ(xα0

1
, . . . , xα0

n
))

= f∗1 (τ(xα0
1
, . . . , xα0

n
)) = 1,

hence
fhom(τ∗ − τ(xα0

1
, . . . , xα0

n
)) = 0,

as required. 2.8

2.9. Theorem. Suppose µ = µ<µ < λ, Q = Qλ,µ and V |= G.C.H. (for
simplicity). Then:

(1) Q is µ-complete, µ+-c.c. (hence forcing with Q preserves cardinals
and cofinalities).

(2) °Q “2µ = (λµ)V ”, |Q| = λ<µ, so cardinal arithmetic in V Q is easily
determined.

(3) Let G ⊆ Q be generic over V . Then BA[G] (see Definition 2.5(4))
is a Boolean algebra of cardinality λ such that :

(a) if θ ≤ λ is regular then for some subalgebra B of BA[G],
π(B) = θ,

(b) if θ ≤ λ and θ > cf(θ) > µ then for no B ⊆ BA[G] is π(B) = θ,
(c) BA[G] has µ non-zero pairwise disjoint elements but no µ+ such

elements (so its cellularity is µ),
(d) if a ∈ B+ then BA[G]¹a satisfies (a), (b), (c) above (and also

(e)),
(e) if θ ≤ λ and cf(θ) ≤ µ then for some B′ ⊆ BA[G] we have

π(B′) = θ,
(f) in BA[G] for every α < λ, {xβ : α ≤ β < α+ µ} ⊆ B+ is dense

in 〈{xβ : β < α}〉BA[G].

2.9A. R e m a r k. (1) This shows the consistency of a negative answer
to problems 13 and 15 of Monk [M].

(2) We could of course make 2µ bigger by adding the right number of
Cohen subsets of µ.

P r o o f o f T h e o r e m 2.9. By Claim 2.7 clearly parts (1), (2) hold.
We are left with part (3). By 2.6(3), BA[G] is a Boolean algebra, by 2.6(4)
it has cardinality λ. As for clause (a), it is exemplified by 〈xα : α < θ〉BA[G]
(by 2.6(4)). The first statement of (c) is easy by the genericity of G (i.e. for
p ∈ Q and α ∈ λ\wp we can find q such that p ≤ q ∈ Q, wq = wp ∪ {α}
and in BA[q], xα is disjoint from all y ∈ J , for any ideal J of BA[p]). The
second statement of (c) follows from the ∆-system argument and the proof
of 2.7(2).
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Concerning the generalization of clause (a) in (d), let a ∈ (BA[G])+, so
we can find finite disjoint u, v ⊆ λ such that 0 <

⋂
α∈u xα −

⋂
α∈v xα ≤ a,

choose β = sup(u ∪ v), and let

U =
{
xγ : β < γ < β + θ, and BA[G] |= “xγ ≤

( ⋂
α∈u

xα −
⋂
α∈v

xα

)
”
}
.

This set is forced to be of cardinality θ and the subalgebra of (BA[G])¹a
generated by {xγ ∩ a : γ ∈ [β, β + θ)} is as required.

The generalization of (b) in (d) follows from clause (b). For the gen-
eralization of clause (c) in (d), the cellularity being ≤ µ follows from (c),
and the existence of min{|a|, µ} pairwise disjoint elements follows from the
fact that for every p ∈ Qλ,µ, α < λ and a∗ ∈ BA[p] such that a∗ ∈ 〈xβ :
β ∈ wp ∩ α〉BA[p] and β ∈ [α, λ)\wp there is q such that p ≤ q ∈ Qλ,µ and
BA[q] |= “(∃γ ∈ wp\α)[xβ ∩ xγ = 0] & xβ ≤ a∗”.

As for clause (e) (and the generalization in clause (d)), let a ∈ (BA[G])+,
and let u ⊆ λ be finite such that a ∈ 〈xα : α ∈ u〉BA[G]. Then we can find
〈ai : i < µ〉, pairwise disjoint non-zero members of 〈xα : α ∈ (sup(u),
sup(u) + µ)〉BA[G] which are below a. Let θ =

∑
ζ<cf(θ) θζ with each θζ

regular, let Bζ ⊆ BA[G]¹aζ be a subalgebra with π(Bζ) = θζ , and lastly let
B be the subalgebra of BA[G]¹a generated by {ai : i < cf(θ)}∪⋃ζ<cf(θ)Bζ ;
check that π(B) = θ.

Clause (f) follows by a density argument. The real point (and the only
one left) is to prove clause (b) of part (3). So suppose toward a contradiction
that µ < cf(χ) < χ ≤ λ and p ∈ Q but p °Q “

˜
B ⊆ BA[

˜
G] is a subalgebra,

π(
˜
B) = χ”. Then by Claim 2.2+2.3(1), p ° “for arbitrarily large regular

θ < χ, there is y = 〈yα : α < θ〉 (a sequence of non-zero elements of
˜
B) and

a θ-complete proper filter D on θ (containing the cobounded subsets of θ)
such that (⊗Bȳ,D) holds (see 2.3(1))”.

Let κ = cf(χ). Then we can find regular θζ ∈ (cf(χ), χ) (so θζ > µ)
increasing with ζ such that χ =

∑
ζ<κ θζ , and for i < κ,

(∑
j<i θj

)κ
< θi

(remember V |= G.C.H.) and for each ζ < κ, a condition pζ with p ≤ pζ ∈ Q,
and

˜
yζ = 〈

˜
yζα : α < θζ〉, and (a Q-name of a) proper θζ-complete filter

˜
Dζ on

θζ containing the cobounded subsets of θζ such that pζ ° “(⊗B¯
˜
yζ ,˜Dζ

)” (and

without loss of generality ° “
˜
yζα ∈ (BA[

˜
G])+”). For each ζ < κ and α < θζ

there is a maximal antichain pζ,α = 〈pζ,α,ε : ε < µ〉 of members ofQ above pζ
and terms τζ,α,ε = τ ′ζ,α,ε(xβ(ζ,α,ε,0), . . . , xβ(ζ,α,ε,nα(ζ,ε))) (i.e. Boolean terms
in {xα : α < λ}) such that pζ ≤ pζ,α,ε and pζ,α,ε °Q “

˜
yζα = τζ,α,ε”. Without

loss of generality {β(ζ, α, ε, l) : l ≤ nα(ζ, ε)} ⊆ w[pζ,α,ε].
Clearly for each ζ < κ, pζ ° “θζ is the disjoint union of {α < θζ : pζ,α,ε ∈

˜
G} for ε < µ” so for some Q-name

˜
εζ < µ, we have pζ °Q “{α < θζ : pζ,α,

˜
εζ

∈
˜
G} 6= ∅ mod

˜
Dζ”. So there are εζ < µ and qζ satisfying pζ ≤ qζ ∈ Q such
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that qζ ° “εζ is as above” and let pζ,α := pζ,α,εζ . So we have a Q-name
˜
Aζ

such that qζ °Q “
˜
Aζ ⊆ θζ , ˜

Aζ 6= ∅ mod
˜
Dζ and α ∈

˜
Aζ ⇔ pζ,α ∈ ˜

GQ”.
By possibly replacing θζ , ˜

Aζ by A∗ζ ∈ [θζ ]θζ , ˜
A′ζ =

˜
Aζ ∩ A∗ζ respectively,

and increasing qζ , we can assume that otp(wpζ,α) = i∗ζ (< µ), and letting
wpζ,α = {βα,ζ,i : i < i∗ζ} (increasing with i) and (by Claim 2.4) for some
w∗ζ ⊆ i∗ζ , 〈β∗ζ,i : i < i∗ζ〉 and τ∗ζ we have τ ′ζ,α,εζ = τ∗ζ , and for some strictly
increasing 〈j(ζ, l) : l ≤ nζ〉 we have

qζ °Q “(a) α ∈
˜
Aζ & i ∈ w∗ζ ⇒ βα,ζ,i = β∗ζ,i,

(b) β(ζ, α, εζ , l) = βζ,α,j(ζ,l) and nα(ζ, εζ) = nζ ,

(c) for every β′ζ,i < β∗ζ,i (for i ∈ i∗ζ\w∗ζ ) we have

{α < θζ : α ∈
˜
Aζ , [i ∈ w∗ζ ⇒ βα,ζ,i = β∗ζ,i] and for i ∈ i∗ζ\w∗ζ

we have β′ζ,i < βα,ζ,i < β∗ζ,i} 6= ∅ mod
˜
Dζ”.

Also

i ∈ i∗ζ\w∗ζ ⇒
(

2 +
∑

j<i

θj

)κ
< cf(β∗ζ,i) ≤ θζ

(remember
˜
Dζ is a θζ-complete filter on θζ).

As we can replace 〈θζ : ζ < κ〉 by any subsequence of length κ, and κ =
cf(κ) > µ, without loss of generality i∗ζ = i∗, w∗ζ = w∗ and otp(wqζ ) = j∗.
Let wqζ = {β∗ζ,i : i∗ ≤ i < j∗}. Now we apply 2.4 to κ, Dκ (filter of closed
unbounded sets) and 〈〈β∗ζ,i : i < j∗〉 : ζ < κ〉 and get 〈β⊗i : i < j∗〉 and
w⊗ ⊆ j∗. Without loss of generality the qζ are pairwise isomorphic. Note

i ∈ i∗\w∗ & ζ < ξ < κ⇒ β∗ζ,i 6= β∗ξ,i
(as cf(β∗ζ,i) ≤ θζ and cf(β∗ξ,i) > θζ). Hence w⊗ ∩ i∗ ⊆ w∗. For every ζ < κ

and i ∈ i∗\w∗, let β−ζ,i < β∗ζ,i be such that the interval [β−ζ,i, β
∗
ζ,i) is disjoint

from {β∗ξ,j : ξ < κ, j < i∗} ∪ {β⊗i : i < i∗}, and as we can omit an initial
segment of 〈θi : i < κ〉, without loss of generality [β∗ζ,i, β

⊗
i ) is disjoint from

{β⊗j : j < i∗}. For each ζ < κ, choose αζ ∈ A∗ζ such that

i ∈ i∗\w∗ ⇒ βζ,αζ ,i ∈ [β−ζ,i + µ, β∗ζ,i).

Let
˜
Y = the Boolean subalgebra generated by {τζ,αζ : qζ ∈ ˜

G and pζ,αζ ∈ ˜
G}.

This set has cardinality ≤ κ, and we shall prove

(∗) q0 °Q “
˜
Y \{0} is dense in {τ0,β : β ∈

˜
A0}”.

This contradicts the choice q0 ° “(⊗˜B¯
˜
y0,˜D0

) &
˜
A 6= ∅ mod

˜
D0”.

To prove (∗) assume q0 ≤ r0 ∈ Q. We can choose ζ∗ < κ and r+
ζ for ζ ∈

[ζ∗, κ) such that r0 ≤ r+
0 , qζ ≤ r+

ζ , pζ,αζ ≤ r+
ζ and 〈rζ : ζ = 0 or ζ ∈ [ζ∗, κ)〉

is as in 2.8; apply 2.8 and get a contradiction. 2.9
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A theorem complementary to 2.9 is:

2.10. Theorem. Suppose π(B) > λ and either

(A) cf(λ) = ℵ0 or
(B) (∀µ < λ)[µ<cf(λ) < λ] or
(C) (∀µ < λ)[2µ < π(B)] (or just) (∀µ < λ)[2µ < |B|] & λ ≤ π(B).

Then B has a subalgebra B′ such that λ = π(B′) = |B′|.
R e m a r k. The conclusion of 2.10 implies that λ ∈ πSs(B) := {π(A) :

A ⊆ B}.
P r o o f o f T h e o r e m 2.10. Case (C) is easier so we ignore it. By 2.1

without loss of generality π(B) = λ+ = |B|. By induction on α < λ, we try
to choose aα such that:

(a) aα ∈ B+,
(b) for β < α we have B |= “aα ∩ aβ = 0”,
(c) π(B¹aα) < λ+.

Let aα be defined iff α < α∗.

C a s e 1: α∗ ≥ λ. Let B′ be the subalgebra generated by {aα : α < λ}.
Clearly |B′| = π(B′) = λ.

C a s e 2: Not Case 1 but
∑
α<α∗ π(B¹aα) ≥ λ. So we can find distinct

αζ < α∗ for ζ < cf(λ) such that
∑
ζ π(B¹aαζ ) ≥ λ. We can find regular

θζ ≤ π(B¹aαζ ) such that supζ<cf(λ) θζ = λ and then find Bζ ⊆ B¹aαζ such
that |Bζ | = θζ and π(Bζ) = θζ (by 2.1). Let B′ be the subalgebra of B
generated by

⋃
ζ<cf(λ)Bζ ∪ {aαζ : ζ < cf(λ)}. Clearly |B′| = π(B′) = λ.

C a s e 3: Cases 1 and 2 fail . Let I = {a ∈ B : (∀α < α∗)[a ∩ aα = 0]},
so I is an ideal of B and a ∈ I ⇒ π(B¹a) ≥ λ. Also I 6= {0} (since if I = {0}
then π(B) ≤∑α<α∗ π(B¹aα) < λ). So easily without loss of generality:

if a ∈ I ∩B+ then π(B¹a) > λ,(∗)
if a ∈ I ∩B+ then B¹a is an atomless Boolean algebra.(∗∗)

Let B∗ = I ∪ {−b : b ∈ I}, a subalgebra of B. Now without loss of
generality B∗ satisfies (cf(λ))-c.c. (otherwise act as in Case 2), so we have
finished if Case (A) of the hypothesis holds.

So Case (B) of the hypothesis holds, hence we can use Lemma 4.9, p.
88 of [Sh:92] and find a free subalgebra B′ of B∗ of cardinality (λ<cf(λ))+,
hence of cardinality λ; this B′ is as required. 2.10

3. On π and πχ of products of Boolean algebras

3.1. Theorem. Suppose

(⊗) ℵ0 < κ = cf(χ) < χ < λ = cf(λ) < χκ and (∀θ < χ)[θκ < χ].
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Then there are Boolean algebras Bi (for i < κ) such that (for π(F,B), πχ(B)
see below)

(∗) (a) πχ(Bi) < χ =
∑
j<κ πχ(Bj),

(b) for any uniform ultrafilter D on κ, λ = πχ
(∏

i<κBi/D
)
,

(c) if D is a regular ultrafilter on κ then
∏
i<κ(πχ(Bi))/D = χκ.

3.2. Definition. (1) For a Boolean algebra B and an ultrafilter F of B,
let

π(F,B) = min{|X| : X ⊆ B+ and (∀y ∈ F )(∃x ∈ X)[x ≤ y]}.
We say X as above is dense in F (though possibly x 6∈ F ).

(2) For a Boolean algebra B,

πχ(B) = sup{π(F,B) : F an ultrafilter of B},
πχ+(B) =

⋃
{π(F,B)+ : F an ultrafilter of B}.

3.3. R e m a r k. (1) If κ = ℵ0 the theorem holds almost always and
probably always, but we omit this case to simplify the statement. (The
theorem holds for κ = ℵ0 e.g. if χ < λ = cf(λ) < (first fix point > χ), more
generally if

(⊗′) κ = cf(χ) < χ < λ = cf(λ) < pp+
Jbd
κ

(χ) and 2κ < χ

(see [Sh:g], VIII, §1). The point is that [Sh 355], 5.4, deals with uncountable
cofinalities.)

3.4. P r o o f o f T h e o r e m 3.1. For a linear order I, let BA[I] be
the Boolean algebra of subsets of I generated by the closed-open intervals
[a, b) = {x ∈ I : a ≤ x < b} where we allow a ∈ {−∞} ∪ I, b ∈ I ∪ {∞}
(and a ≤ b). Now clearly

(∗)1 if F is an ultrafilter on BA[I], then there is a Dedekind cut (Id, Iu) of
I (i.e. Id ∩Iu = ∅, Id ∪Iu = I and (∀x0 ∈ Id)(∀x1 ∈ Iu)[x0 < x1])
such that for x ∈ BA[I], x ∈ F iff for some a0 ∈ Id, a1 ∈ Iu we have
[a0, a1) ≤ x,

(∗)2 if I, F and (Id, Iu) are as above then

π(F,BA(I)) =





max{cf(Id), cf((Iu)∗)} if cf(Id), cf((Iu)∗) ≥ ℵ0,
cf(Id) if cf((Iu)∗) ≤ 1,
cf((Iu)∗) if cf(Id) ≤ 1,
1 if cf(Id) = cf((Iu)∗) = 1.

Note also

πχ(BA(I)) = sup{cf(Id), cf((Iu)∗) : (Id, Iu) a Dedekind cut of I}.



Monk’s questions 15

Now by the assumption (⊗) (and [Sh:g], II,5.4 + VIII, §1]), we can find a
(strictly) increasing sequence 〈λi : i < κ〉 of regular cardinals with κ<λi<χ
and χ =

∑
i<κ λi such that

∏
i<κ λi/J

bd
κ has true cofinality λ (where Jbd

κ is
the ideal of bounded subsets of κ).

Let Q be the rational order and Ii be λi ×Q (i.e. the set of elements is
{(α, q) : α < λi, q ∈ Q}, and the order is lexicographical). Let Bi = BA[Ii].
By (∗)1 and (∗)2 we know that πχ(Bi) = λi. Moreover, if F is an ultrafilter
of Bi, then π(F,B) = ℵ0 except when F is the ultrafilter Fi generated by
{xiα = [(α, 0),∞) : α < λi}. Let xiα,q := [(α, q),∞). Let D be a uniform
ultrafilter on κ, so

∏
i<κ λi/D has cofinality λ. Also if D is regular, then

(see [CK]) we know that χκ =
∏
i<κ λi/D =

∏
i<κ(πχ(Bi))/D. So parts (a)

and (c) of (∗) of Theorem 3.1 are satisfied.
To prove part (b) of (∗), let D be a uniform ultrafilter on κ and let

B :=
∏
i<κBi/D. Let F be such that (B,F ) =

∏
i<κ(Bi, Fi)/D. Clearly F

is an ultrafilter of B; it is generated by X =
∏
i<κXi/D, where Xi = {xiα,q :

α < λ, q ∈ Q} ⊆ Bi, which is linearly ordered in B, and this linear order has
the same cofinality as

∏
i<κ λi/D, which has cofinality λ. So πχ(F,B) = λ,

hence πχ(B) ≥ λ.
Let F ′ be an ultrafilter of B with F ′ 6= F . Let Xd := {x ∈ X : x ∈ F ′}

and Xu := {x ∈ X : x 6∈ F ′ (i.e. 1B − x ∈ F ′)}. Clearly (Xd, Xu) is
a Dedekind cut of X (which is linearly ordered: as a subset of B, or as∏
i<κXi/D, where Xi ⊆ Bi inherit the order from Bi, so xiα,a < xiβ,b ⇔

(α, a) < (β, b)). If Xd = X then clearly F ′ = F , a contradiction, so Xu 6= ∅.
We now prove that πχ(F,B) ≤ 2κ. If not, we shall choose by induction

on ζ < (2κ)+ a set Yζ , subsets Ziζ , of λi for i < κ, increasing continuous in
ζ, and yζ such that:

• |Ziζ | ≤ 2κ,

• ξ < ζ ⇒ Ziξ ⊆ Ziζ ,
• Yζ =

∏
i<κ(Ziζ ×Q)/D\{0}, so |Yζ | ≤ 2κ,

• yζ ∈ F ′,
• yζ ∈ Yζ+1,
• (∀y ∈ Yζ)[y > 0⇒ B ² ¬y ≤ yζ ].

There is no problem in doing this for i = 0: let Ziζ = {0}, and for i limit
let Ziζ =

⋃
ε<ζ Z

i
ε. Now having defined 〈Ziζ : i < κ〉 (hence Yζ), choose

appropriate yζ and let

yζ = 〈yiζ : i < κ〉/D, yiζ =
⋃

l<ni,ζ

[xiαi,ζ,2l,qi,ζ,2l , x
i
αi,ζ,2l+1,qi,ζ,2l+1

),

where 〈(αi,ζ,l, qi,ζ,l) : l < 2ni,ζ〉 is a strictly increasing sequence of members
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of Ziζ ∪ {−∞,+∞} (we write −∞ = (−∞, 0),+∞ = (∞, 0)). Let

Ziζ+1 = Ziζ ∪ {αi,ζ,l : l < 2ni,ζ}.
For some unbounded U ⊆ (2κ)+ we have

(a) qi,ζ,l = qi,l and ni,ζ = ni;

applying 2.4, we get an easy contradiction. 3.4

3.4A. R e m a r k. We can similarly analyze (when Bi = BA[Ii]){
π
(
F,
∏

i<κ

Bi/D
)

: F an ultrafilter of
∏

i<κ

Bi/D
}∖

(2κ)+

=
{
λ : λ′i = cf(λ′i) > 2κ and in Ii there is a Dedekind cut

(Xd, Xu) such that (cf(Xd), cf(X∗u)) = (λdi , λ
u
i ) such that

λ = min
[{

cf
(∏

λui /D
)
, cf
(∏

λdi /D
)}∖{1}

]}
.

Note in comparison that by Koppelberg–Shelah [KpSh 415], Th. 1.1, we
have

3.5. Theorem. Assume D is an ultrafilter on κ, and for i < κ, Ai is a
Boolean algebra with λi = π(Ai). Assume the Strong Hypothesis [Sh 420],
6.2, i.e. pp(µ) = µ+ for all singulars or just SCH. If 2κ < λi (or just
{i : 2κ < λi} ∈ D) then

π
(∏

i<κ

Ai/D
)

=
∏

i<κ

λi/D.

3.6. Claim. Assume that for i < κ, Ai is an infinite Boolean algebra, D
is a non-principal ultrafilter on κ and A :=

∏
i<κAi/D. If ni < ω for i < κ

and µ := |∏i<κ ni/D| and µ is a regular cardinal then πχ(A) ≥ µ, even
πχ+(A) > µ.

P r o o f. Let χ be a large enough regular cardinal (i.e. such that
κ,D,Ai, A belong to H(χ)). Let Ci = (H(χ),∈, <∗) and C =

∏
i Ci/D,

so A is a member of C.
Clearly ω∗ := 〈ω : i < κ〉/D is considered by C a limit ordinal and, from

the outside, has a cofinality, which we call λ. Without loss of generality,
i < κ⇒ ni > 2.

The proof is divided into two cases.

C a s e 1: There are no µ0 < µ and n0
i < ni such that ℵ0 ≤ µ0 =

|∏i<κ n
0
i /D|. We can find n∗i such that (we shall not use any further prop-

erties of the n∗i ):

(1) µ = |∏i<κ n
∗
i /D|,
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(2) µ = |∏i<κ 2(n∗i )(n∗
i

)
/D|.

For i < κ, let 〈aik : k < 2(n∗i )(n∗
i

)〉 be pairwise disjoint non-zero members
of Ai with union 1Ai . Let P i be the Boolean subalgebra of Ai generated

by {aik : k < 2(n∗i )(n∗
i

)}. Let Ri := {aik : k < 2(n∗i )(n∗
i

)}. For k < n∗i , let
Qik ⊆ P i be a set of n∗i pairwise disjoint non-zero elements of P i such that
if 〈bk : k < n∗i 〉 ∈

∏
k<n∗i

Qik then
⋂{bk : k < n∗i } is not zero.

Let F i(x) :=
⋃{aik : x ∩ aik 6= 0Ai and l < k ⇒ x ∩ ail = 0Ai} so the

union is on at most one element and F i(x) = 0Ai ⇔ x = 0Ai .
Let (A,P,Q,R, F, n∗) :=

∏
i<κ(Ai, P i, Qi, Ri, F i, n∗i ). (We consider Q as

a two-place relation.) Note that

(∗)1 P is a Boolean subalgebra of A,
(∗)2 if D is a subset of P+ then its density in A is equal to its density in P .

[Why? If Y ⊆ A+ is dense in D, then {F (c) : c ∈ Y } is a subset of P+ dense
in D of cardinality ≤ |Y |; for the other direction use the same set.]

Now let us enumerate the members of n∗ as {kα : α < µ} (no repetitions);
we also list the members of P+ as {cα : α < µ}. Now by induction on α < µ
we choose a member bα of Qkα which contains (in A) no one of {cβ : β < α}.
As each cβ can “object” to at most one b ∈ Qkα (as the candidates are
pairwise disjoint) and Qkα has cardinality µ > |α|, we can do this. Also by
the choice of the Qi’s there is a filter of P to which bα belongs for every
α < µ, so we are done as µ is regular.

C a s e 2 (2): There are µ0 < µ and n0
i < ni such that ℵ0 ≤ µ0 =∏

i<κ n
0
i /D. We can define Xi, Yi such that Xi is the family of those subsets

of Yi with exactly n0
i elements and |Yi| = ni × n0

i + 1 and e.g. Yi is a set
of natural numbers; note that |Xi| > ni. Let X := 〈Xi : i < κ〉/D and
Y := 〈Yi : i < κ〉/D. For y ∈ Y (in C’s sense) let Sy := {x ∈ X : y ∈ x}. Let
n1
i := |Xi|, note |∏i<κ n

1
i /D| ≥ µ; let 〈aik : k < n1

i 〉 be a partition of 1Ai
to non-zero members of Ai and hi be a one-to-one function from Xi onto
Ri := {aik : k < n1

i }, and for y ∈ Yi let biy :=
⋃{hi(x) : x ∈ Sy} ∈ Ai;

we define h, n1, 〈by : y ∈ Y 〉 ∈ C naturally. Let P ∗i be the subalgebra of Ai
generated by {aik : k < n1

i } and P ∗ =
∏
i<κ Pi/D as in the other case. By a

cardinality argument if k < ω, then

n0
i > k & y0, . . . , yk−1 ∈ Y ⇒ Ai |= “biy0

∩ . . . ∩ biyk−1
6= 0Ai”,

hence {by : y ∈ Y } ⊆ P ∗ generates a filter of P ∗. Let D be an ultrafilter
of P ∗ containing by for y ∈ Y . If Z ⊆ A \ {0} exemplifies the density
of D in A∗ and is of cardinality µ2 < µ, as in Case 1 without loss of

(2) In this case the regularity of µ is not used.
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generality Z = {af : f ∈ F} ⊆ P ∗, where F ⊆ ∏i<κ n
1
i with |F | < µ and

af := 〈aif(i) : i < κ〉/D. Let n = 〈ni : i < κ〉/D and n0 = 〈n0
i : i < κ〉/D.

For each f ∈ F , h−1(af ) is from X, so is a subset of Y of cardinality
n0 from the inside (“considered” by C to be so) and µ0 from the outside;
there is a set W of n members of X pairwise disjoint; now from the inside
W has cardinality n and from the outside it has cardinality µ so there is
a member of X disjoint from all the h−1(af ), a contradiction to density.
So D has density µ in A, hence for every ultrafilter F of A extending D,
π(F,A) ≥ µ.

Hence πχ(A) ≥ µ as required. 3.6

3.7. R e m a r k. (1) If we ignore regularity, Case 1 suffices as for every
n/D ∈ ωκ/D and µ =

∏
n/D ≥ ℵ0 we can find nl/D ∈ ωκ/D such that

ωκ/D |= “n ≤ 2n̄
l+1/D < nl/D”, so 〈|nl/D| : l < ω〉 is eventually constant.

(2) If each Ai is of cardinality ℵ0 and µ = ℵκ0/D is regular the proof
above gives πχ(

∏
i<κAi/D) = µ (if 3.6 does not apply, ωκ/D is µ-like, so

we can apply Case 2 with |Xi| = |Yi| = ℵ0).
(3) By Peterson [P] the regularity of µ is necessary. For singular µ our

proof still gives πχ+(A) > cf(µ).
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Added in proof (June 1996). We can add to Claim 2.3:

Claim 2.3(3). Assume that B is a Boolean algebra and σ < θ = cf(θ) and (∗)Bσ [Y ]
and for no τ ∈ (σ, θ) and Y ′ do we have (∗)Bτ [Y ′]. Then in the conclusion of 2.3(1) we can
add : D is normal (hence in 2.2 we get that for arbitrarily large θ < µ, there are a normal
filter D on θ and 〈yi : i < θ〉 as in 2.3(1)).

R e m a r k. If θ = τ+ then 2.3(2) gives the conclusion.

P r o o f. Let Y = {yi : i < θ}. We choose by induction on n < ω a club En of θ and a
sequence yn = 〈yni : i < θ〉 of non-zero members of B such that:

(a) letting Yn = {yni : i < θ}, we have Y = Y0, Yn ⊆ Yn+1 and En+1 ⊆ En,
(b) if δ ∈ En+1 and if δ < α < min(En \ (δ + 1)) then for some β < δ, yn+1

β
≤B ynα.

For n = 0, let y0 list Y and E0 = {δ < θ : δ a limit ordinal divisible by σ}.
For n = m+ 1, for each δ ∈ En, let γδ = min(En \ (δ + 1)) and let Znδ be a subset of

B+ of cardinality ≤ σ dense in {ymi : δ ≤ i < γδ}, which exists by the proof of 2.2. Let
Znδ = {znδ+i : i < σ} (no double use of the same index).

Also for each ζ < σ let Dnζ be the normal filter on θ generated by the subsets of θ of

the form {i < θ : z 6≤ yni+ζ} for z ∈ B+; by our assumption toward contradiction there

are znζ,ε ∈ B+ for ε < θ and club Enζ of θ such that if δ ∈ Enζ and ζ < σ then for some
ε < δ we have zζ,ε ≤ ynδ+ζ .

Let En+1 be a club of θ included in En and in each Enζ and choose yn+1 such that:

its range includes the range of yn and for δ1 < δ2 ∈ En+1, {yn+1
δ+ξ : ξ < σ} includes

{ynδ+ξ : ξ < σ} ∪ Znδ and {yn+1
i : i < δ} includes each znζ,ε for ζ < σ and ε < δ. The rest

is as in the proof of 2.3(2).


