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Abstract. We deal with Boolean algebras and their cardinal functions: m-weight 7
and m-character my. We investigate the spectrum of m-weights of subalgebras of a Boolean
algebra B. Next we show that the w-character of an ultraproduct of Boolean algebras may
be different from the ultraproduct of the m-characters of the factors.

Annotated content
1. Introduction

2. Existence of subalgebras with a preassigned algebraic density. We first
note (in 2.1) that if m(B) > 6 = cf(6) then for some B’ C B we have 7(B’) = 6. Call this
statement (x). Then we give a criterion for m(B) = u > cf(p) (in 2.2) and conclude for
singular p that for a club of @ < u the (x) above holds (2.2A), and investigate the criterion
(in 2.3). Our main aim is, starting with g = u<*, cf(\) < A, to force the existence of
a Boolean algebra B such that 7(B) > 6 but for no B* C B do we have 7n(B’) = A
(in fact (3B € B)[r(B') = 0 < 6 = cf(§) V cf(§) < u] for every 6 < |B]). Toward
this, we define the forcing (Definition 2.5: a condition p tells us how (zo : o € WP)
generate a Boolean algebra, BA[p], WP € [A\]<* with 24 > 0 having no non-zero member
of (xzg : B € WPNa)pp[p below it). We prove the expected properties of the generic (2.6),

also the forcing has the expected properties (u-complete, uT-c.c.) (in 2.7). The main
theorem (2.9) stated, the main point being that if p < cf(f) < 6 for B C BA[G], then
m(B) # 0; we use the above criterion, and a lemma related to A-systems (see [Sh 430],
6.6D, [Sh 513], 6.1) quoted in 2.4, to reduce the problem to some special amalgamation of
finitely many copies (the exact number is in relation to the arity of the term defining the
relevant elements from the z’s). The existence of such amalgamation was done separately
earlier (2.8).

Lastly, in 2.10 we show that the c¢f(6) > p above was necessary by proving the existence
of a subalgebra with prescribed singular algebraic density A satisfying 7(B) > X\ and
(Vi < N)[<FN) < AL
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3. On 7 and 7x of products of Boolean algebras. If e.g. Ry < £k = cf(x) <
X < A =cf(A) < x® and (V8 < x)[0" < x] we show that for some Boolean al-
gebras B; (fori < k), x = ZKK mx(B;) < A and (for D a regular ultrafilter on x)

A= WX(HKn B;/D) but HKK(WX(Bi))/D = x". For this we use interval Boolean alge-
bras on orders of the form \; x Q.

We also prove for infinite Boolean algebras B; (for ¢ < ) and D an ultrafilter on  that
if n; <Ng and p = Hi</~c n;/D is a regular (infinite) cardinal then WX(Hi<K B;/D) > pu.

1. Introduction. Monk [M] asks (problems 13, 15 in his list; 7 is the
algebraic density, see 1.1 below): For a (Boolean algebra) B with Xy < 6 <
m(B), does B have a subalgebra B’ with 7(B’) = 67

If 6 is regular the answer is easily seen to be positive (see 2.1). We show
that in general it may be negative (see 2.9(3)), but for quite many singular
cardinals, it is positive (2.10); the theorems are quite complementary. This
is dealt with in §2.

In §3 we mainly deal with 7wy (see Definition 3.2) and show that the 7y
of an ultraproduct of Boolean algebras is not necessarily the ultraproduct
of the mx’s. Note that in Koppelberg—Shelah [KpSh 415], Theorem 1.1, we
prove that if SCH holds and m(B;) > 2" for i < k then

(T[] B:/D) = [L(x(B:))/D.
<K 1<K
We also prove that for infinite Boolean algebras A; (i < k) and a non-
principal ultrafilter D on &, if n; < Ry for i < x and p := [[, . ni/D is
regular, then my(A) > p. Here A :=[],_,. A;/D. By a theorem of Peterson
[P] the regularity of p is necessary.

1<K

1.1. NOTATION. Boolean algebras are denoted by B and sometimes A.
For a Boolean algebra B, set
BT :={x € B:z #0},
7(B) := min{|X|: X € BT is such that (Vy € B")(3z € X)[z < y]}.
X like that is called dense in B. More generally, if X,Y C B we say X is
denseinY if yeY&y#0=(Irc X)0<z<y]l.ForaY CB, (Y)pis
the subalgebra of B which Y generates.

04 is the constant function with domain A and value zero. 1,4 is defined
similarly.

2. Existence of subalgebras with a preassigned algebraic density
2.1. OBSERVATION. If w(B) >0 =cf(0) > |Y|+X¢ and Y C B then for
some subalgebra A of B, Y C A, n(A) =0 and |A| = 0.

Proof. Without loss of generality |Y| = 6. Let Y = {y, : @ < }. Choose
by induction on « < 6 subalgebras A, of B, increasing continuously in «,
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with |A,] < 0 and y, € Aq+1, such that for each a < 6, some z,, € A;H

is not above any y € AY. This is possible because for no o < § can Al be
dense in B. Now A = Ay is as required. ms |

2.2. CLAIM. Assume B is a Boolean algebra with m(B) = p > cf(u) > Ng
(see Notation 1.1). Then for arbitrarily large reqular 6 < p,

(x)§  for some set Y we have:

(*)E[Y] Y C BT,|Y| =0, and there is no Z C B of cardinality
< 0,dense inY (i.e. Yy eY)( 3Tz e Z)[z <y)).

2.2A. CONCLUSION. If B is a Boolean algebra, m(B) = pu > cf(u) > g
and (p¢ : ¢ < cf(p)) is increasing continuously with limit p (so pe < p),
then for some club C of cf(u), for every ¢ € C, for some B. C B we have
m(Be) = -

Proof of 2.2. Let Z* C B™ be dense with |Z*| = u. If the conclusion
fails, then for some 6* < p, for no regular 0 € (6%, 1) does ()7 hold. We
now assume we chose such a 6%, and show by induction on A < p that

(®x) ifY € BT and |Y| < ), then for some Z C Bt, |Z] < 0* and Z is
dense in Y.

Case 1: A<O0*. LetZ=Y.

Case 2: 6 < A < poand cf(N) < A Let Y = [J{¥¢ : ¢ < cf(N)},
|Y:] < A. By the induction hypothesis for each { < cf(\) there is Z, C Bt
of cardinality < 6* which is dense in Y¢.

Now Z' := U§<cf()\) Z¢ has cardinality < 6* 4 cf(\) < A, hence by the
induction hypothesis there is Z C B dense in Z’ with |Z| < 6*. Clearly Z
is dense in Y, |Z| < 6* and Z C B* so we finish the case.

Case 3: 0* < X\ < u, A regular. If for this Y, (x)Z[Y] holds, we get
the conclusion of the claim. We are assuming not so; so there is 2/ C BT
dense in Y with |Z’| < A. Apply the induction hypothesis to Z’ and get Z
as required.

So we have proved (®)).
We apply (®,) to A =pu, Y = Z* and get a contradiction. ms o

2.3. Cram. (1) If B, p, 0, Y are as in 2.2 (so (x)F[Y] holds and 6 is
reqular) then we can find § = (y, : a < 0) whose range is contained in BT,
and a proper 8-complete filter D on 6 containing all cobounded subsets of 6
such that

(®5D) for every z€ BT, {a<6:2<y,}=0modD.



4 S. Shelah

(2) If in addition 0 is a successor cardinal (*) then we can demand that
D is normal.

Remark. Part (2) is for curiosity only.
Proof. (1) Let Y = {y, : @ < 0}. Define D as follows: for & C 0,
UecD iff forsome0<(¢<0andz € BT for ¢ <,

we have U D {a < 0 : (Ve < ()[z: £ yal}-

Trivially D is closed under supersets and intersections of < # members and
every cobounded subset of § belongs to it. Now @) ¢ D because (x)F[Y].

(2) Let # = oT. Assume there are no such 7, D. We try to choose by
induction on n < w, Y (o < 6) and club E,, of 6 such that:

(a) Y is a subset of Bt of cardinality < 6, increasing continuous in «,

(b) Y C Y+,

(c) YV ={ys: B < a} (where {y, : @ < 0} are taken from part (1)),

(d) E,isaclubof b, E,11 C E,, Ey ={0 <0 :¢ divisible by o},

(e) if § € Epy1 and 6 < o < min(E,\(0 + 1)) then for every y € Y.
there is z € V"™ with z < y.

If we succeed, let 8* = (J,, ., min(E,) (< ), and we shall prove that
U, <., Y4 is dense in Y, getting a contradiction. For every y € U, <o Yo'
let B(y) be the minimal 8 < 6 such that (3z € U, ., Y§)[z < y]. Now
B is well defined as y € Uz g U, Y5 If B(y) < B* for every y € V

(€ Unco YY) we are done, as (J

S new Y4 1 B < 0) is increasing continuous;
assume not, so some y* € Y =J,, Y2 exemplifies this. Now let 3 = 5(y*)
and let z € U, Y exemplify this. Clearly (sup(8N E,) : n < w) is well
defined; clearly it is a non-increasing sequence of ordinals, hence eventually
constant, say n > n* = sup(8 N E,) = 7. Now, without loss of general-
ity z € YB"* (by clause (b)); note v € E,, for n > n* (hence for every n).
But by clause (e) there is 2’ € Y,Y”*Jrl with 2z’ < z, contradicting the choice
of (.

So we cannot carry out the construction, that is, we are stuck at some n.
Fix such an n. Let E, U {0} = {0. : ¢ < 6} (increasing with ). Let
Yé"zﬂ\YgZ C {y¢ : ¢ < o}. For each ¢ < o, let D¢ be the normal filter
generated by the family of subsets of 6 of the form {¢ < 6 : z £ yg} for
z € BY. If ) € D, for every ¢ < o, we can define Y™ and F, 41, a con-
tradiction. So for some ¢, 7° = (yf : ¢ < o) and D¢ are as required in

(®;73<7D<)- "3
2.4. CLAIM. Suppose D is a o-complete filter on 0, 0 = cf(0) > o > 2%,

and for each a < 0, B = (8% : ¢ < k) is a sequence of ordinals. Then

(1) But see the end of the paper.
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for every U C 0 with U # O mod D there are (3% : ¢ < k) (a sequence of
ordinals) and w C k such that:

(a) € € k\w = cf(B}) <80,
(b) if (Va < o)[lalt < o] then e € k\w = o < cf(57),
(c) if BL<BE foralle and [e € w = (L = B7] then

{aeU: 3L < B2 < B forall e and e € w= B = B3]} # 0 mod D.

Proof. [Sh 430], 6.1D, and better presented in [Sh 513], 6.1.
2.5. DEFINITION. (1) If FF C "2 let
cl(F)={ge"2 : for every finite u Cw and some f € F' we have glu= flu}.

If f e ™2, wC Ordand a € Ord let f[* be (fTwNa)) U0y q; let flool = .
(2) Let p = p~* < X\. We define a forcing notion Q = Qx

(a) the members are pairs p = (w, F) = (wP, FP), w C \, |w| < p,
and F is a family of < u functions from w to {0, 1} satisfying
(a) for every a € w and some f € F, f(a) =1,

(B)if f € F and o € w then fl* € F,

(b) the order: p < ¢ iff w? C w? and

(a) f € F1= flwP € cl(FP),
(8) (Vf € FP)(3g € F9)[f C g].

(3) For w C A and F C "2 let BA[w, F] = BA[(w, F)] be the Boolean
algebra freely generated by {z, : @ € w} except that if v and v are finite
subsets of w and 1, U0, C f for no f € F, then (., Ta — Uﬁev zg = 0.

(4) If G C Qx,, is generic over V then BA[G] is |J .o BA[p] (see 2.6(2),
(3) below). Here BA[p] := BA[wP, FP].

2.6. CLAIM. (0) Forp € Qx,., BA[p| is a Boolean algebra; also for f € FP
and ordinal o (or oo) we have fl*l € FP.

(1) If f € F? and p € Qx,,, then f induces a homomorphism f*™ from
BA[p] to the two-member Boolean algebra {0,1}. In fact, for a term T in
{Zo : @ € WP}, BA[p] = “7 # 07 iff for some f € FP, ftom(r) = 1.

(2) If p < q then BAlp] is a Boolean subalgebra of BA[q].

(3) Hence BA[G] is well defined, p Ik “BAlp| is a Boolean subalgebra of
BAIGT"

(4) Forp € Qi and o € wP, x4 is a non-zero element which is not in
the subalgebra generated by {xz : < a} nor is there below it a non-zero
member of (xg : 3 < a)Bap]-

peG

Proof. Part (0) should be clear, and also part (1). Now part (2) follows
by 2.5(2)(b) and the definition of BA[p]; so (3) should become clear. Lastly,
concerning part (4), x, is a non-zero member of BA[p| by clause («) of
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2.5(2)(a). For a € wP, by 2.5(2)(a)(a) there is f! € FP with f!(a) =1, and
by 2.5(2)(a)() there is fO € FP with fO(a) =0, fOol(wNa) = f1(wNa);
together with part (1) this proves the second phrase of part (4). As for the
third phrase, let 7 be a non-zero element of the subalgebra generated by
{xg : B < a}, so for some f € FP, fhom(7) = 1. By 2.5(2)(a)(3), letting
fi = flol, we have fi(a) = 0 and f; € F? and fi[(wNa) C f. Hence
fiem(r) = fhom(7) = 1 and fi(a) = 0, hence fP°™(x,) = 0. This proves
BA[p] ’: “r f l‘a”. m G

2.7. CLAIM. Assume p = pu~F < \.

(1) Qa, is a p-complete forcing notion of cardinality < A<H.
(2) Q. satisfies the pt-c.c.

Proof. (1) The number of elements of ()5 , is at most

{(w, F):w C A |w| < pand F is a family of < p functions
from w to {0,1}}]
< Y H{F:FC“2and |F| < p}|
wCA, |Jw|<p

< Z @2h<r < {w:w C X and |w| < p}| x p
wC, |w|<p

= A 4 p= A

As for the p-completeness, let (p¢ : ¢ < &) be an increasing sequence of
members of Qy , with § < p. Let pc = (we, F¢), let FC/ = cl(F¢), let w =
we and let F/ = € w2 : for every ( < 0 we have flws € F!}.
¢<s W ¢ ¢

Clearly for every ( < § and f € F¢ thereis g = gy € F’ extending f. Lastly,
let F={gs:f¢ Ue<s F¢}. Then p = (w, F) € Q, is an upper bound of
(p¢ : ¢ < 6), as required.

2) By the A-system argument it suffices to prove that p°, p' are com-

(
patible when:

a) otp wP’) = otp wP') and letting H = HOY | be the unique order

wpPl wp
preserving function from wP’ onto wpl),
(b) H maps p° onto p!, ie. f € P s (foH Y e o
(c) acw’ = a<H(a),

(d) for a € wP” we have o € wP iff o = H(a).
We now define ¢ € @) by setting w? = wP’ UwP' and

FI={(fU(foHN:feFr, Bew Ui} mr
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2.8. CLAIM. Assume p = p<* < X. Suppose Q = Q. and:

(a) pl € Q forl <m < N,

(b) otp(wpl) = otp(wpo), and Hy j, = HSE e (see the proof of 2.7(2)),

(c) Hyj maps p* onto p',

(d) for a € wP’ the sequence (Hio(a) : 1 =1,...,m — 1) is either
strictly increasing or constant; and {a, 3} C w? & Lk <mé&
Hio(a) = Hpo(B) implies a = B; lastly, letting w* = wP’ NwP we
have [l # k = w? NwP’ = w*] and Hy i [w* is the identity,

. 0 .
1y---s4n y & P gy )
(e) 7(x xp) is a Boolean term, o € wP fori € {1 n}, af <
...<ab and ol = Hyo(a?),
(f) in BA[P°], T(xa9, -, a0) is not zero and even not in the subalgebra

generated by {x, : a € w*},
(g m—1>n+1.

Then there is q € Q such that:

() pt < q forl<m, and w! = U< WP,
(B) q = “in BA[G], there is a non-zero Boolean combination 7* of
{T(@atse v mar) 1 1< T <m} which is < 71(Ta0,- .., %a0)".

Proof. By assumption (f) (and 2.6(0), (4)) there are f§, fi € cf(F?")
such that:

(A) folw™ = filw,
(B) in the two-member Boolean algebra {0, 1} we have

T(fo(ad), . fo(an)) =0,  7(fi(ad),.... fi(a})) = 1.
Now there is vy € w?’ U {00} such that (f&) = f& & (i) = f (e.g.

v = o). Choose such a (v, f§, fi) with v minimal. Let w? = ?;61 wP' . We
define a function g € (**)2 as follows:
(0]
o glwP = [,

e for odd I € [1,m), g[wpl = f{ o Hp,, and
o for even | € [1,m) (but not [ =0), g* lwP' = f§ o Hoy.

Now g is well defined by clause (A) above. Let us define g:

Fq:{(iglfoHoJ)[a} o€ wlU{oo} andferO}

U{g!: a e wlU{o0}},
q= (quFq)'
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We first check that ¢ € Q. Clearly w9 € [A\]<*. Also F4 C (**)2 and
|F'9| < p so we have to check the conditions (o) and (f) of Definition
2.5(2)(a):

() If @ € w9 then a € wP' for some | < m, so as p' € Q thereis f; € ad
such that fj(a) = 1. Now fy = f; 0 Hy for some fy € FP’ so

fi=" (foo Hox) = ( U OHo,k))[oo}

k<m k<m
belongs to F'9 and f(«) = (fo o Ho,)(a) = fi(a) = 1.
(B) As for o, B € wU {oo} and f € ()2 we have (flo)IFl = flmin{e.5}

and as (Ul<m fl) ol _ Uz<m(fl)[a]7 this condition holds by the way we have
defined F.

We now check that p' < ¢ for I < m. By the choice of ¢ clearly wP' C i,
Also if f € FP' then foH € F?’ and

U ((foHpg)o Ho,k)[oo}

k<m
belongs to F'? and extends f. Lastly, if f € F9 we prove that f[wpl €
cE(Fpl) (in fact, € Fpl). Let w! := wP'. We have two cases: in the first case

f= (Ul<m(f0 o Ho’l))[a] for some fy € F”O; let 8 = min[w! U {oo}\a], so
fleltwt = (fo o Hg,l)[ﬂ]; clearly fyo Hy,; € Fpl, hence (fy o HO,Z)W] € F? is
as required. The second case is f = gl°l. Let g = min[wpl U {oo}\@]; now
frwP' s fi o Hyy or fi o Hp, so frwP' is (f& o Ho)P or (ff o Ho )P and
hence belongs to FP .

Finally, we check that there is a non-zero Boolean combination of
{r(@ars o smq) 1 =1,...,m — 1} which is < 7(249,...,740) in BAg].
The required Boolean combination will be

[((m—2)/2] [((m=1)/2]
T = m T(ma?*l’ R ,SUa%l+1) - U T(xa%la oo axa%l)'
1=0 =1

So we have to prove the following two assertions.
ASSERTION 1. BA[q] = “7* # 0.
Now g = gl € F4 satisfies, for each I € [0, [(m — 2)/2]],

ghom(7<$a§l+1, e xa%l+1)) = (f'i|< o H0’2l+1)hom<7—(xafl+l’ o ,Hfoéng—l)) =1;
also for each [ € [1, [(m —1)/2]],
ghom(T(:r:a%z, s Tea)) = (fg o H()’gl)hom(’r(aj‘a%z, s Tg2t)) = 0.

Putting the two together, we get the assertion.
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ASSERTION 2. BA[q] = “T(2q0,...,Za0) > 7.
So we have to prove just that

f € F1= fhom(r* — (a0, Tag)) = 0.

Case 1: For some a € w? U {oo} and fo € FP' we have

f= ( U fOOHO,l)[ ]'
I<m

Let g = min(wpl U {oo}\@), and let v, € w?’ be such that v, = Hoy . (61)
or v, = 5 = co. Now by the assumption on (wpl cl<m), (y: 1 <m)is
non-increasing. For [ < m, let j; = min{j : [j = n+ 1] or [j € {1,...,n}
and a? > vl}. So (j; : I < m) is non-increasing and there are < n + 1
possible values for each j;. But by assumption (g), m — 1 > n + 1, so for
some k,0 < k < k+1<m and jx = jr11. So (as oﬂil < ...<O/)

(Vj =1,... 7n)[f(xaf) - f(xa;?+1)]7

hence
(% = Lo ) [ (gs) = ()]
hence
fhom(T(xaxf, e Tak)) = fhom(T(ﬂi'alchrl, e Tkt1),
hence (see definition of 7*) fh°m(7*) = 0, hence
fhom(r* — T(Ta0,. 1 Ta0)) =0,

as required.

Case 2: For some a € w?U {00}, f =gl
Let again 3; = min(wpl U{oo\a), vi = Ho1(51) (or vy = B = 00), and

o= {w if v <7,
: oo if M=,
and let j; = min{j : [j = n+ 1] or[j € {1,...,n} and o) > ~]]}. So
(7 : 1 <m) and (7] : I < m) are non-increasing and so is (j; : { < m). Here
«v is the ordinal we chose before defining ¢;, just after (B) in the proof.
If for some k,0 < k < k+1 <m and jp = jry1 < n (hence v, <5, <),
then

from(r* — T(Ta0, -, Ta0)) =0
as fhom(7*) = 0, which holds because
fhom(T(fL'allc, NN ,l'al;)) = fhom(T(l'alle+1, cey xa}fb"'l))

(the last equality holds by the choice of ~; i.e. if inequality holds then the
triple (va, (f5)P), (f)D*) contradicts the choice of v as minimal). But
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ji (I =1,...,m — 1) is non-increasing, hence we can show inductively on
Il =1,...,n+ 1 that j,,—; > l. So necessarily 51 = n + 1 but as j; is
non-increasing, clearly jo = n + 1 and hence

F(r(@ags 5 ag)) = 6N T (209, Tan)) = 9T (X9 -+ Tag)

0
= f1(7(a9, -, Ta0)) =1,

n

hence

fhom(T* — T<$a?7---7xa%)) =0,

as required. mo g

2.9. THEOREM. Suppose j1 = p<H* < X\, Q = Qx, and V = G.C.H. (for
simplicity). Then:

(1) Q is p-complete, u*-c.c. (hence forcing with Q preserves cardinals
and cofinalities).

(2) kg “2# = (M)V7, Q| = A<H, so cardinal arithmetic in VO is easily
determined.

(3) Let G C @ be generic over V. Then BA[G] (see Definition 2.5(4))
is a Boolean algebra of cardinality A such that:

(a) if @ < X is regular then for some subalgebra B of BA|[G],
m(B) =0,
(b) if 8 < X and 6 > cf(0) > p then for no B C BA[G] is n(B) = 6,
(¢) BA[G] has p non-zero pairwise disjoint elements but no ut such
elements (so its cellularity is p),
(d) if a € BT then BA[G]|a satisfies (a), (b), (c) above (and also
(©)),
(e) if 8 < X\ and cf(0) < u then for some B’ C BA[G| we have
m(B') =4,
(f) in BA[G] for every a < X\, {5 : a < 3 < a+pu} C BT is dense
in ({zg: B < al)paq)-
2.9A. Remark. (1) This shows the consistency of a negative answer
to problems 13 and 15 of Monk [M].
(2) We could of course make 2* bigger by adding the right number of
Cohen subsets of pu.

Proof of Theorem 2.9. By Claim 2.7 clearly parts (1), (2) hold.
We are left with part (3). By 2.6(3), BA[G] is a Boolean algebra, by 2.6(4)
it has cardinality A. As for clause (a), it is exemplified by (74 : @ < 0)pa[q)
(by 2.6(4)). The first statement of (c) is easy by the genericity of G (i.e. for
p € Q and o € \\w? we can find ¢ such that p < ¢ € Q, w? = wP U {a}
and in BA[q], z, is disjoint from all y € J, for any ideal J of BA[p]). The
second statement of (c) follows from the A-system argument and the proof
of 2.7(2).
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Concerning the generalization of clause (a) in (d), let a € (BA[G])T, so
we can find finite disjoint u,v C X such that 0 < (¢, Ta — Nacy Ta < a,
choose # = sup(u Uv), and let

U= {x,y 1B <v<B+0, and BA[G] = “a4 < ( ﬂ To — m xa)”}.
acu acv
This set is forced to be of cardinality 6 and the subalgebra of (BA[G])|a
generated by {z, Na:~v € [B,0+60)} is as required.

The generalization of (b) in (d) follows from clause (b). For the gen-
eralization of clause (c) in (d), the cellularity being < p follows from (c),
and the existence of min{|a|, u} pairwise disjoint elements follows from the
fact that for every p € Qx , a0 < X and a* € BA[p] such that a* € (x4 :
B € wP Na)gap and B € [a, \)\wP there is ¢ such that p < g € @, and
BAl¢] = “(Fy € wP\o)[zg Nzy = 0] & zg < a™”.

As for clause (e) (and the generalization in clause (d)), let a € (BA[G])™T,
and let u C A be finite such that a € (2o : @ € u)pa[g).- Then we can find
(a; : 1 < ), pairwise disjoint non-zero members of (z, : a € (sup(u),
sup(u) + p))Bajc) which are below a. Let 6 = > ._ ) 0c with each ¢
regular, let B; € BA[G]la¢ be a subalgebra with 7(B) = 6, and lastly let
B be the subalgebra of BA[G][a generated by {a; : i < cf(0)}UU¢cr(p) B
check that 7(B) = 6.

Clause (f) follows by a density argument. The real point (and the only
one left) is to prove clause (b) of part (3). So suppose toward a contradiction
that u < cf(x) < x < Aand p € Q but p kg “B C BA[G] is a subalgebra,
m(B) = x”. Then by Claim 2.242.3(1), p I “for arbitrarily large regular
6 < x, there is ¥ = (7, : a < 6) (a sequence of non-zero elements of B) and
a O-complete proper filter D on 6 (containing the cobounded subsets of 6)
such that (®§D) holds (see 2.3(1))”.

Let k = cf(x). Then we can find regular 6. € (cf(x),x) (so Oc > )
increasing with ¢ such that x = > ., 0, and for i < &, (qu 6?3-)N < 0;
(remember V' = G.C.H.) and for each ¢ < &, a condition p, with p < p, € Q,
and yC <y< a < 0¢), and (a @-name of a) proper 6¢-complete filter D¢ on
f; containing the cobounded subsets of f; such that pe I- “(® )” (and

without loss of generality I NC € (BA[G])™”). For each ¢ < K and o < O
there is a maximal antichain p® = (p¢ o ¢ : € < p) of members of Q above p¢
and terms 7¢ o . = 7'670[’5(:1:5(@&76,0), e TB(Canema (Ce))) (i-e. Boolean terms
in {z, : @ < A}) such that pc < p¢ o and peae kg “yg = T¢,a,e - Without
loss of generality {3((, o, e,1) : I <no((,€)} Cwpe el

Clearly for each ¢ < &, p¢ IF “O is the disjoint union of {& < 8¢ : p¢ o €
G} for e < p” so for some Q-name ¢ < p, we have p¢ IFg “{a < ¢ @ peae,
€ G} # 0 mod D:”. So there are e¢ < p and ¢¢ satisfying pc < ¢¢ € @ such
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that g¢ IF “e¢ is as above” and let p¢ o = P a,e.- SO we have a Q-name A¢
such that g¢ kg “4< C o, é( # () mod D¢ and o € 4C & pea €GQ7.

By possibly replacing 0, A¢ by A} € 015, 4’4 = A¢ N A7 respectively,
and increasing g¢, we can assume that otp(wPs.=) = if (< p), and letting
wPee = {B, ;11 < ig} (increasing with 7) and (by Claim 2.4) for some
wg Cag, (BF,; 01 <df) and 77 we have Téﬂﬁc = 77, and for some strictly
increasing (j(¢,1) : I < n¢) we have

g kg “(a) a € Ac & i € wz = Ba,ci = ﬁz,m
(b) B(¢, v e¢,1) = Be,a,j(¢,) and na(C,e¢) = ng,
(c) for every B¢, < B¢, (for i € if\wf) we have
{fa<bc:aed, fic wz = Ba,ci = ﬂzfz] and for i € ZZ\wZ
we have (3} ; < Baci < B} # 0 mod D¢”.
Also

ieifwi= (2+3°6;) <cf(5,) <o
j<i
(remember D¢ is a f¢-complete filter on 6¢).

As we can replace (0¢ : ( < k) by any subsequence of length «, and k =
cf(x) > p, without loss of generality if = i*, wi = w* and otp(wi) = j*.
Let w% = {521 :4* <i < j5*}. Now we apply 2.4 to k, D, (filter of closed
unbounded sets) and ((8;; : i < j*) : ( < k) and get (B2 i < j*) and
w® C j*. Without loss of generality the g¢ are pairwise isomorphic. Note

i€ \w & (< E< k=0, F B
(as cf(Bf;) < Oc and cf(B ;) > 0¢). Hence w® Ni* C w*. For every ( < &
and i € *\w*, let Be; < B¢, be such that the interval Waw B¢ ;) is disjoint
from {8 ;:§ <k, j<i*}U {B? :i < i*}, and as we can omit an initial
segment of (0; : i < k), without loss of generality [3; ,, BY) is disjoint from
{5;8 1 j <i*}. For each ¢ <k, choose a; € Af such that

1 E z*\w* = ﬁc,ag,i S [ﬂ;l + :U’a/gz,z)

Let Y= the Boolean subalgebra generated by {7¢ o, : ¢ € G and p¢ o, € G}.
This set has cardinality < x, and we shall prove

(%) g0 kg “Y'\{0} is dense in {93 : B € Ao}".
This contradicts the choice gg IF “( 50720) & A # ) mod Dy”.
To prove () assume gy < 79 € Q. We can choose (* < x and rzr for ¢ €

[¢*, k) such that ro <77, ¢ < rzr, Perae < 7“2' and (r¢ : ¢ =0or ¢ € [(*,k))
is as in 2.8; apply 2.8 and get a contradiction. mg g
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A theorem complementary to 2.9 is:

2.10. THEOREM. Suppose 7(B) > X and either

(A) cf(N) =Rg or

(B) (Y < ) [p=) < X] or

(C) (Vu < AN)[2* < 7(B)] (or just) (Yu < N)[2* < |B|] & A < 7(B).
Then B has a subalgebra B’ such that A\ = n(B’) = |B’'|.

Remark. The conclusion of 2.10 implies that A € mgs(B) = {m(A4) :
A C B}.

Proof of Theorem 2.10. Case (C) is easier so we ignore it. By 2.1
without loss of generality 7(B) = AT = |B|. By induction on a < \, we try
to choose a,, such that:

(a) a, € BT,

(b) for f < a we have B = “aq Nag =07,

(c) m(Blas) < AT.

Let a, be defined iff o < o™.

Case 1: a* > \. Let B’ be the subalgebra generated by {a, : @ < A}.
Clearly |B'| = n(B’) = \.

Case 2: Not Case 1 but ), _ . 7(Blaa) > A. So we can find distinct
a¢ < o~ for ¢ < cf(A) such that } . m(Blaa,) > A. We can find regular
0c < m(Blaa,) such that sup;.¢(y) 0¢c = A and then find B; C Blag, such
that |B¢| = 6, and w(B;) = 6, (by 2.1). Let B’ be the subalgebra of B
generated by U;c¢(n) Be U{aa, : ¢ < cf(A)}. Clearly [B'| = n(B’) = A.

Case 3: Cases1 and 2 fail. Let [ = {a € B: (Va < a®)[aNay = 0]},
so I is anideal of B and a € I = 7(Bla) > A. Also I # {0} (since if I = {0}
then m(B) <3 o« 7(Blaa) < A). So easily without loss of generality:

(%) if a € I'N BT then m(Bla) > A,
(k) if @ € I'N BT then Bla is an atomless Boolean algebra.

Let B* = I U{-b : b € I}, a subalgebra of B. Now without loss of
generality B* satisfies (cf()\))-c.c. (otherwise act as in Case 2), so we have
finished if Case (A) of the hypothesis holds.

So Case (B) of the hypothesis holds, hence we can use Lemma 4.9, p.
88 of [Sh:92] and find a free subalgebra B’ of B* of cardinality (A<¢f(M))+,
hence of cardinality \; this B’ is as required. mg 19

3. On 7 and 7y of products of Boolean algebras
3.1. THEOREM. Suppose
(®) RVo<r=cf(x)<x<A=cf(\) <x® and (V0 < x)[0" < x].
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Then there are Boolean algebras B; (fori < k) such that (for w(F, B), mx(B)
see below)

(x) (&) mx(Bi) <x =225, X(Bj),

(b) for any uniform ultrafilter D on k, XA = nx([I,-,. Bi/D),

1<K
(c) if D is a regular ultrafilter on k then [, .. (mx(B;))/D = x*.

3.2. DEFINITION. (1) For a Boolean algebra B and an ultrafilter F' of B,
let

7(F,B) =min{|X|: X C B" and (Vy € F)(3r € X)[z <y}

We say X as above is dense in F' (though possibly = ¢ F).
(2) For a Boolean algebra B,

mx(B) = sup{n(F, B) : F' an ultrafilter of B},
ax T (B) = U{ﬂ'(F, B)T : F an ultrafilter of B}.

3.3. Remark. (1) If Kk = Ny the theorem holds almost always and
probably always, but we omit this case to simplify the statement. (The
theorem holds for k = Rg e.g. if x < A = cf(\) < (first fix point > x), more
generally if

(®") r=cf(x) <x <A=cf()\) < pp}r}gd (x) and 2" <y

(see [Sh:g], VIII, §1). The point is that [Sh 355], 5.4, deals with uncountable
cofinalities.)

3.4. Proof of Theorem 3.1. For a linear order Z, let BA[Z] be
the Boolean algebra of subsets of Z generated by the closed-open intervals
[a,b) = {x € T : a < x < b} where we allow a € {—c0} UZ, b € ZU {0}
(and a < b). Now clearly

(¥);  if F'is an ultrafilter on BA[Z], then there is a Dedekind cut (Z¢,Z") of
7 (ie. Z9NZT" =0, Z79UT* = T and (Voo € Z) (Vo1 € T%)[w0 < 11])
such that for z € BA[Z], z € F iff for some ag € %, a; € I" we have
lag,a1) < x,

(x)o if Z, F and (Z¢,T%) are as above then

H;?;(g)cf(f“),cf((f“)*)} %i Cig(fzdgcg(i I)*) > No,
mEBAD) =1 cr((zvy) if f(T9) <1,
1 if ¢f(Z%) = cf((Z%)*) =1
Note also

ax(BA(Z)) = sup{cf(Z%), cf((Z%)*) : (Z¢,T%) a Dedekind cut of T}.



Monk’s questions 15

Now by the assumption (®) (and [Sh:g], I1,5.4 + VIII, §1]), we can find a
(strictly) increasing sequence (; : i < k) of regular cardinals with kK < A; < x
and x = Y, A; such that [],_, Ai/JP? has true cofinality A (where JP¢ is
the ideal of bounded subsets of k).

Let Q be the rational order and Z; be A; x Q (i.e. the set of elements is
{(a,q) : @« < \i, ¢ € Q}, and the order is lexicographical). Let B; = BA[Z;].
By (*)1 and (*)2 we know that mx(B;) = \;. Moreover, if F' is an ultrafilter
of B;, then n(F, B) = X except when F' is the ultrafilter F; generated by
{2, = [(a,0),00) : @ < Ai}. Let zf, , := [(a,¢),00). Let D be a uniform
ultrafilter on &, so [, Ai/D has cofinality A. Also if D is regular, then
(see [CK]) we know that x* = [[,.,. Ai/D = [],...(mx(B;))/D. So parts (a)
and (c) of () of Theorem 3.1 are satisfied.

To prove part (b) of (x), let D be a uniform ultrafilter on x and let
B :=[],.,. Bi/D. Let F be such that (B, F) = [],.,.(B;, F;)/D. Clearly F
is an ultrafilter of B; it is generated by X = [[,_, X;/D, where X; = {z7, , :
a < A, ¢ € Q} C By, which is linearly ordered in B, and this linear order has
the same cofinality as [[,_,. Ai/D, which has cofinality A. So 7x(F, B) = A,
hence mx(B) > A.

Let F’ be an ultrafilter of B with F’ # F. Let Xy :={z € X : 2 € '}
and X, == {r € X : oz ¢ F' (ie. 1p — 2 € F')}. Clearly (X4, X,) is
a Dedekind cut of X (which is linearly ordered: as a subset of B, or as
[L;c.. Xi/D, where X; C B; inherit the order from B;, so :Efx’a < x%’b &
(a,a) < (B,0)). If X4 = X then clearly F' = F', a contradiction, so X,, # 0.

We now prove that mx(F, B) < 2”. If not, we shall choose by induction
on ¢ < (2%)% a set Y, subsets Zé, of \; for i < k, increasing continuous in
¢, and y¢ such that:

° |Zé| <27,

° { < (= Z¢ C Z

o Yo =];.(Z¢ x Q)/D\{0}, so [Y¢| < 2,
oy €I,

oy €Yo,

o (VyeY)ly>0= BF -y <y

<K

There is no problem in doing this for i = 0: let Z{ = {0}, and for 4 limit
let Z{ = Uece Z!. Now having defined (Z : i < &) (hence Y¢), choose
appropriate y¢ and let

Ye = <yC < E>/D’ Ye = U [xai,g,%y‘h,c,m’xai7§,2l+1a‘h,§,2l+1)7
l<niv¢

where ((v,¢i,¢ic1) 2 1 < 2n;¢) is a strictly increasing sequence of members
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of Z{ U {—o00, +oo} (we write —oo = (—00,0), +00 = (00,0)). Let
Zty = ZEU{ouca i 1< 2ng )
For some unbounded U C (2%)" we have
(a) Gici = qiy and  n; ¢ =ng;
applying 2.4, we get an easy contradiction. mg 4

3.4A. Remark. We can similarly analyze (when B; = BA[Z;])
{W(F, H Bi/D> : F an ultrafilter of H Bi/D}\(Q"i)-i-

1<K 1<K
= {)\ : \; = cf(A\]) > 2" and in Z; there is a Dedekind cut
(X4, X.,) such that (cf(Xg),cf(X7)) = (A%, A¥) such that

177

A = min H of (HA;%/D),cf (HA?/D)}\{l}} }

Note in comparison that by Koppelberg—Shelah [KpSh 415], Th. 1.1, we
have

3.5. THEOREM. Assume D is an ultrafilter on k, and for i < k, A; is a
Boolean algebra with \; = w(A;). Assume the Strong Hypothesis [Sh 420],
6.2, i.e. pp(p) = pt for all singulars or just SCH. If 25 < X\; (or just

{i:2" < \;} € D) then
W(HAi/D> - [[ /D
1<K <K
3.6. CLAIM. Assume that for i < k, A; is an infinite Boolean algebra, D
is a non-principal ultrafilter on k and A =[], . Ai/D. If n; <w fori <k
and p = |I],..ni/D| and p is a regular cardinal then wx(A) > p, even
X (A) > p.

Proof. Let x be a large enough regular cardinal (i.e. such that
k,D,A;, A belong to H(x)). Let ¢ = (H(x),€,<*) and € = [],¢,;/D,
so A is a member of €.

Clearly w* := (w: i < k)/D is considered by € a limit ordinal and, from
the outside, has a cofinality, which we call A. Without loss of generality,
1< k=>n; > 2.

The proof is divided into two cases.

Case 1: There are no ug < p and n9 < n; such that g < po =

Ticw n?/D|. We can find n} such that (we shall not use any further prop-
erties of the n}):

(1) p=[1Lic.ni/Dl,
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* (n:)
(2) p=TT;c, 2" /D).

For i < k, let (a} : k < 2("7)“L:)> be pairwise disjoint non-zero members
of A; with union 14,. Let P’ be the Boolean subalgebra of A; generated
by {ai : k < 200"}, Let R = {ai, : k < 20D} For k < n, let
Q% C P' be a set of n} pairwise disjoint non-zero elements of P’ such that
if (b : k <n}) € [[jeps Qk then N{by : k < nf} is not zero.

Let F'(z) := U{a} : zNaj, # 0a, and I < k = zNaj = 04,} so the
union is on at most one element and F'(z) =04, © = = 04,.

Let (A, P,Q, R, F,n*) := HKR(Ai,Pi, Q% R', F',n?). (We consider Q as
a two-place relation.) Note that

(x)1 P is a Boolean subalgebra of A,
(x)2  if D is a subset of P then its density in A is equal to its density in P.

[Why? If Y C A" is dense in D, then {F(c) : ¢ € Y} is a subset of P* dense
in D of cardinality < |Y|; for the other direction use the same set.]

Now let us enumerate the members of n* as {k, : @ < u} (no repetitions);
we also list the members of Pt as {c, : @ < u}. Now by induction on o < p
we choose a member b, of Qj,, which contains (in A) no one of {cg : 8 < a}.
As each cg can “object” to at most one b € Q. (as the candidates are
pairwise disjoint) and Qy,_ has cardinality p > |a|, we can do this. Also by
the choice of the Q%’s there is a filter of P to which b, belongs for every
a < pu, so we are done as p is regular.

Case 2 (?): There are py < p and nd < n; such that Ry < pg =
HK,$ n?/D. We can define X;,Y; such that X; is the family of those subsets
of ¥; with exactly n? elements and |Y;| = n; x n{ + 1 and e.g. Y; is a set
of natural numbers; note that |X;| > n;. Let X := (X, : i < k)/D and
Y:=(Y;:i<k)/D.ForyeY (in €s sense) let S, := {x € X : y € x}. Let
ni := |X;|, note |[[,.,.ni/D| > p; let (a}, : k < n}) be a partition of 14,
to non-zero members of A; and h; be a one-to-one function from X; onto
R; == {a}, : k < nj}, and for y € Y let b}, := U{hi(z) : © € Sy} € Aj;
we define h,n', (b, : y € Y) € € naturally. Let P} be the subalgebra of A;
generated by {a}, : k < n;} and P* =[],_, P;/D as in the other case. By a
cardinality argument if £ < w, then

n >k&yo,..., g1 €Y = A; = bl N.Nb, | #04,7,

Yk—1

hence {b, : y € Y} C P* generates a filter of P*. Let D be an ultrafilter
of P* containing b, for y € Y. If Z C A\ {0} exemplifies the density
of D in A* and is of cardinality pus < pu, as in Case 1 without loss of

(%) In this case the regularity of s is not used.
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generality Z = {ay : f € F} C P*, where F C [[,_, n; with |[F| < p and
af = (a% 1 <k)/D.Let n=(n;:i<k)/D and n® = (n? i <k)/D.

For each f € F, h™!(ay) is from X, so is a subset of Y of cardinality
no from the inside (“considered” by € to be so) and po from the outside;
there is a set W of n members of X pairwise disjoint; now from the inside
W has cardinality n and from the outside it has cardinality p so there is
a member of X disjoint from all the h=1(as), a contradiction to density.
So D has density p in A, hence for every ultrafilter F' of A extending D,
m(F,A) = p.

Hence mx(A) > p as required. m3 g

3.7. Remark. (1) If we ignore regularity, Case 1 suffices as for every
n/D € w*/D and pu = [[n/D > Xy we can find #'/D € w*/D such that
w"/DE “n < 9i' /D < n'/D”, so (|n'/D| : 1 < w) is eventually constant.

(2) If each A; is of cardinality Rg and p = Rf/D is regular the proof
above gives mx([[;-, Ai/D) = p (if 3.6 does not apply, w”/D is p-like, so
we can apply Case 2 with | X;| = |Y;| = Rp).

(3) By Peterson [P] the regularity of u is necessary. For singular p our
proof still gives mx*(A4) > cf(p).
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Added in proof (June 1996). We can add to Claim 2.3:

CLAIM 2.3(3). Assume that B is a Boolean algebra and o < 0 = cf(0) and (x)Z[Y]
and for no 7 € (0,0) and Y’ do we have (x)B[Y"]. Then in the conclusion of 2.3(1) we can
add: D is normal (hence in 2.2 we get that for arbitrarily large 0 < u, there are a normal
filter D on 0 and (y; : i < 0) as in 2.3(1)).

Remark. If 6 = 77 then 2.3(2) gives the conclusion.

Proof. Let Y = {y; : i < 8}. We choose by induction on n < w a club Ej, of 6 and a
sequence §"* = (y!' : i < 0) of non-zero members of B such that:

(a) letting Yy, = {y;* : i < 0}, we have Y = Y0, Yy, C Y41 and Epq1 C Ey,
(b) if § € Ej41 and if § < @ < min(Ep \ (§ + 1)) then for some 3 < 4, yg'H <B Ya.

For n =0, let 7° list Y and Eg = {6 < 0 : § a limit ordinal divisible by o}.

For n =m + 1, for each 0 € En, let v5 = min(Ey, \ (6 + 1)) and let Z§ be a subset of
BT of cardinality < o dense in {y" : § < i < 75}, which exists by the proof of 2.2. Let
Z§ ={z§,; 1 <o} (no double use of the same index).

Also for each ¢ < o let Dg be the normal filter on 6 generated by the subsets of 6 of
the form {i <0 :2 £y .} for z € BT; by our assumption toward contradiction there
are z?,s € BT for € < 6 and club E? of 6 such that if § € E? and ¢ < o then for some
€ < 6 we have z; , < y?+c.

Let E,,+1 be a club of 0 included in Fy and in each E’g and choose @"Jrl such that:
its range includes the range of ¥" and for §; < d2 € Ep41, {yg_ig : & < o} includes

Yy E <o UZY and {y" 1! i < 6} includes each z7 _ for ¢ < ¢ and € < 8. The rest
0+E& 0 4 C,e
is as in the proof of 2.3(2).



