ArticleOriginal scientific text

Title

On the homotopy category of Moore spaces and the cohomology of the category of abelian groups

Authors 1, 2

Affiliations

  1. Max-Planck-Institut für Mathematik, Gottfried-Claren-Str. 26, D-53225 Bonn, Germany
  2. Département de Mathématiques, Université de Valenciennes, B.P. 311, 59304 Valenciennes, France

Abstract

The homotopy category of Moore spaces in degree 2 represents a nontrivial cohomology class in the cohomology of the category of abelian groups. We describe various properties of this class. We use James-Hopf invariants to obtain explicitly the image category under the functor chain complex of the loop space.

Bibliography

  1. J. F. Adams and P. J. Hilton, On the chain algebra of a loop space, Comment. Math. Helv. 30 (1956), 305-330.
  2. H.-J. Baues, Algebraic Homotopy, Cambridge Stud. Adv. Math. 15, Cambridge University Press, 1988.
  3. H.-J. Baues, Combinatorial Homotopy and 4-Dimensional Complexes, de Gruyter, Berlin, 1991.
  4. H.-J. Baues, Homotopy Type and Homology, Oxford Math. Monograph, Oxford University Press, 1996.
  5. H.-J. Baues, Commutator Calculus and Groups of Homotopy Classes, London Math. Soc. Lecture Note Ser. 50, Cambridge University Press, 1981.
  6. H.-J. Baues, Homotopy types, in: Handbook of Algebraic Topology, Chapter I, I. M. James (ed.), Elsevier, 1995, 1-72.
  7. H.-J. Baues, On the cohomology of categories, universal Toda brackets, and homotopy pairs, K-Theory, to appear.
  8. H.-J. Baues and W. Dreckmann, The cohomology of homotopy categories and the general linear group, K-Theory 3 (1989), 307-338.
  9. H.-J. Baues and G. Wirsching, The cohomology of small categories, J. Pure Appl. Algebra 38 (1985), 187-211.
  10. K. A. Hardie, On the category of homotopy pairs, Topology Appl. 14 (1982), 59-69.
  11. P. Hilton, Homotopy Theory and Duality, Gordon and Breach, 1965.
  12. I. M. James, Reduced product spaces, Ann. of Math. 62 (1955), 170-197.
  13. M. Jibladze and T. Pirashvili, Cohomology of algebraic theories, J. Algebra 137 (1991), 253-296.
  14. T. Pirashvili and F. Waldhausen, MacLane homology and topological Hochschild homology, J. Pure Appl. Algebra 82 (1992), 81-98.
  15. J. H. C. Whitehead, A certain exact sequence, Ann. of Math. 52 (1950), 51-110.

Additional information

http://matwbn.icm.edu.pl/ksiazki/fm/fm150/fm15037.pdf

Pages:
265-289
Main language of publication
English
Received
1995-09-11
Accepted
1996-01-29
Published
1996
Exact and natural sciences