ArticleOriginal scientific text
Title
On the homotopy category of Moore spaces and the cohomology of the category of abelian groups
Authors 1, 2
Affiliations
- Max-Planck-Institut für Mathematik, Gottfried-Claren-Str. 26, D-53225 Bonn, Germany
- Département de Mathématiques, Université de Valenciennes, B.P. 311, 59304 Valenciennes, France
Abstract
The homotopy category of Moore spaces in degree 2 represents a nontrivial cohomology class in the cohomology of the category of abelian groups. We describe various properties of this class. We use James-Hopf invariants to obtain explicitly the image category under the functor chain complex of the loop space.
Bibliography
- J. F. Adams and P. J. Hilton, On the chain algebra of a loop space, Comment. Math. Helv. 30 (1956), 305-330.
- H.-J. Baues, Algebraic Homotopy, Cambridge Stud. Adv. Math. 15, Cambridge University Press, 1988.
- H.-J. Baues, Combinatorial Homotopy and 4-Dimensional Complexes, de Gruyter, Berlin, 1991.
- H.-J. Baues, Homotopy Type and Homology, Oxford Math. Monograph, Oxford University Press, 1996.
- H.-J. Baues, Commutator Calculus and Groups of Homotopy Classes, London Math. Soc. Lecture Note Ser. 50, Cambridge University Press, 1981.
- H.-J. Baues, Homotopy types, in: Handbook of Algebraic Topology, Chapter I, I. M. James (ed.), Elsevier, 1995, 1-72.
- H.-J. Baues, On the cohomology of categories, universal Toda brackets, and homotopy pairs, K-Theory, to appear.
- H.-J. Baues and W. Dreckmann, The cohomology of homotopy categories and the general linear group, K-Theory 3 (1989), 307-338.
- H.-J. Baues and G. Wirsching, The cohomology of small categories, J. Pure Appl. Algebra 38 (1985), 187-211.
- K. A. Hardie, On the category of homotopy pairs, Topology Appl. 14 (1982), 59-69.
- P. Hilton, Homotopy Theory and Duality, Gordon and Breach, 1965.
- I. M. James, Reduced product spaces, Ann. of Math. 62 (1955), 170-197.
- M. Jibladze and T. Pirashvili, Cohomology of algebraic theories, J. Algebra 137 (1991), 253-296.
- T. Pirashvili and F. Waldhausen, MacLane homology and topological Hochschild homology, J. Pure Appl. Algebra 82 (1992), 81-98.
- J. H. C. Whitehead, A certain exact sequence, Ann. of Math. 52 (1950), 51-110.
Additional information
http://matwbn.icm.edu.pl/ksiazki/fm/fm150/fm15037.pdf