ArticleOriginal scientific text

Title

Deformations of bimodule problems

Authors 1

Affiliations

  1. Instituto de Matemáticas, Universidad Nacional Autonóma de México, 04510 México, D.F., Mexico

Abstract

We prove that deformations of tame Krull-Schmidt bimodule problems with trivial differential are again tame. Here we understand deformations via the structure constants of the projective realizations which may be considered as elements of a suitable variety. We also present some applications to the representation theory of vector space categories which are a special case of the above bimodule problems.

Keywords

bimodule problems, vector space categories, tame, wild, deformations, degenerations

Bibliography

  1. K. Bongartz, On degenerations and extensions of finite-dimensional modules, Adv. in Math., to appear.
  2. W. W. Crawley-Boevey, On tame algebras and bocses, Proc. London Math. Soc. 56 (1988), 451-483.
  3. W. W. Crawley-Boevey, Functorial filtrations II: clans and the Gelfand problem, J. London Math. Soc. 40 (1989), 9-30.
  4. W. W. Crawley-Boevey, Matrix problems and Drozd's theorem, in: Topics in Algebra, Part 1: Rings and Representations of Algebras, Banach Center Publ. 26, PWN, Warszawa, 1990, 199-222.
  5. Yu. A. Drozd, Tame and wild matrix problems, in: Representation Theory II, Lecture Notes in Math. 832, Springer, 1980, 242-258.
  6. Yu. A. Drozd and G. M. Greuel, Tame-wild dichotomy for Cohen-Macaulay modules, Math. Ann. 294 (1992), 387-394.
  7. P. Gabriel, Finite representation type is open, in: Representations of Algebras, Lecture Notes in Math. 488, Springer, 1975, 132-155.
  8. P. Gabriel, L. A. Nazarova, A. V. Roiter, V. V. 1Sergejchuk and D. Vossieck, Tame and wild subspace problems, Ukrain. Math. J. 45 (1993), 313-352.
  9. P. Gabriel and A. V. Roiter, Representations of Finite-Dimensional Algebras, Encyclopedia of Math. Sci. 73, Algebra VIII, Springer, 1992.
  10. C. Geiß, Tame distributive algebras and related topics, Dissertation, Universität Bayreuth, 1993.
  11. C. Geiß, On degenerations of tame and wild algebras, Arch. Math. (Basel) 64 (1995), 11-16.
  12. R. Hartshorne, Algebraic Geometry, Springer, 1977.
  13. H. Kraft and C. Riedtmann, Geometry of representations of quivers, in: Representations of Algebras, London Math. Soc. Lecture Note Ser. 116, Cambridge Univ. Press, 1985, 109-145.
  14. J. A. de la Pe na, On the dimension of module varieties of tame and wild algebras, Comm. Algebra 19 (1991), 1795-1805.
  15. J. A. de la Pe na, Functors preserving tameness, Fund. Math. 137 (1991), 77-185.
  16. J. A. de la Pe na and D. Simson, Preinjective modules, reflection functors, quadratic forms, and Auslander-Reiten sequences, Trans. Amer. Math. Soc. 329 (1992), 733-753.
  17. C. M. Ringel, Tame algebras, in: Representation Theory I, Lecture Notes in Math. 831, Springer, 1980, 134-287.
  18. C. M. Ringel, Tame Algebras and Integral Quadratic Forms, Lecture Notes in Math. 1099, Springer, 1984.
  19. D. Simson, Linear Representations of Partially Ordered Sets and Vector Space Categories, Algebra Logic Appl. 4, Gordon and Breach, 1992.

Additional information

http://matwbn.icm.edu.pl/ksiazki/fm/fm150/fm15036.pdf

Pages:
255-264
Main language of publication
English
Received
1995-06-27
Accepted
1995-11-27
Published
1996
Exact and natural sciences