ArticleOriginal scientific text
Title
Forcing tightness in products of fans
Authors 1, 2, 3, 4
Affiliations
- Department of Mathematics, University of Tübingen, Tübingen, Germany
- Department of Mathematics, Dartmouth College, Hanover, New Hampshire 03755, U.S.A.
- Department of Mathematics, Union College, Schenectady, New York 12308, U.S.A.
- Department of Mathematical Sciences, Northern Illinois University, DeKalb, Illinois 60115, U.S.A.
Abstract
We prove two theorems that characterize tightness in certain products of fans in terms of families of integer-valued functions. We also define several notions of forcing that allow us to manipulate the structure of the set of functions from some cardinal θ to ω, and hence, the tightness of these products. These results give new constructions of first countable <θ-cwH spaces that are not ≤θ-cwH.
Bibliography
- [Br] J. Brendle, notes.
- [FS] W. G. Fleissner and S. Shelah, Incompactness at singulars, Topology Appl. 31 (1989), 101-107.
- [G] G. Gruenhage, k-spaces and products of closed images of metric spaces, Proc. Amer. Math. Soc. 80 (1980), 477-482.
- [H] F. Hausdorff, Die Graduierung nach dem Endverlauf, Abh. Königl. Sächs. Gesell. Wiss. Math.-Phys. Kl. 31 (1909), 296-334.
- [J] H. Judah, private communication.
- [K] P. Koszmider, Kurepa trees and topological non-reflection, preprint.
- [Ku] K. Kunen, Inaccessibility properties of cardinals, Ph.D. dissertation, Stanford, 1968.
- [LL] T. LaBerge and A. Landver, Tightness in products of fans and psuedo-fans, Topology Appl. 65 (1995), 237-255.
- [R] F. Rothberger, Sur les familles indénombrables de suites de nombres naturels et les problèmes concernant la propriété C, Proc. Cambridge Philos. Soc. 37 (1941), 109-126.
- [T] S. Todorčević, My new fan, preprint.
Additional information
http://matwbn.icm.edu.pl/ksiazki/fm/fm150/fm15032.pdf