ArticleOriginal scientific text

Title

Forcing tightness in products of fans

Authors 1, 2, 3, 4

Affiliations

  1. Department of Mathematics, University of Tübingen, Tübingen, Germany
  2. Department of Mathematics, Dartmouth College, Hanover, New Hampshire 03755, U.S.A.
  3. Department of Mathematics, Union College, Schenectady, New York 12308, U.S.A.
  4. Department of Mathematical Sciences, Northern Illinois University, DeKalb, Illinois 60115, U.S.A.

Abstract

We prove two theorems that characterize tightness in certain products of fans in terms of families of integer-valued functions. We also define several notions of forcing that allow us to manipulate the structure of the set of functions from some cardinal θ to ω, and hence, the tightness of these products. These results give new constructions of first countable <θ-cwH spaces that are not ≤θ-cwH.

Bibliography

  1. [Br] J. Brendle, notes.
  2. [FS] W. G. Fleissner and S. Shelah, Incompactness at singulars, Topology Appl. 31 (1989), 101-107.
  3. [G] G. Gruenhage, k-spaces and products of closed images of metric spaces, Proc. Amer. Math. Soc. 80 (1980), 477-482.
  4. [H] F. Hausdorff, Die Graduierung nach dem Endverlauf, Abh. Königl. Sächs. Gesell. Wiss. Math.-Phys. Kl. 31 (1909), 296-334.
  5. [J] H. Judah, private communication.
  6. [K] P. Koszmider, Kurepa trees and topological non-reflection, preprint.
  7. [Ku] K. Kunen, Inaccessibility properties of cardinals, Ph.D. dissertation, Stanford, 1968.
  8. [LL] T. LaBerge and A. Landver, Tightness in products of fans and psuedo-fans, Topology Appl. 65 (1995), 237-255.
  9. [R] F. Rothberger, Sur les familles indénombrables de suites de nombres naturels et les problèmes concernant la propriété C, Proc. Cambridge Philos. Soc. 37 (1941), 109-126.
  10. [T] S. Todorčević, My new fan, preprint.

Additional information

http://matwbn.icm.edu.pl/ksiazki/fm/fm150/fm15032.pdf

Pages:
211-226
Main language of publication
English
Received
1994-06-14
Accepted
1996-02-29
Published
1996
Exact and natural sciences