ArticleOriginal scientific text

Title

Exactly two-to-one maps from continua onto arc-continua

Authors 1, 2, 1

Affiliations

  1. Institute of Mathematics, Silesian University, Bankowa 14, 40-007 Katowice, Poland
  2. Department of Mathematics, Auburn University, Alabama 36849-5310, U.S.A.

Abstract

Continuing studies on 2-to-1 maps onto indecomposable continua having only arcs as proper non-degenerate subcontinua - called here arc-continua - we drop the hypothesis of tree-likeness, and we get some conditions on the arc-continuum image that force any 2-to-1 map to be a local homeomorphism. We show that any 2-to-1 map from a continuum onto a local Cantor bundle Y is either a local homeomorphism or a retraction if Y is orientable, and that it is a local homeomorphism if Y is not orientable.

Bibliography

  1. J. M. Aarts, The structure of orbits in dynamical systems, Fund. Math. 129 (1988), 39-58.
  2. J. M. Aarts and M. Martens, Flows on one-dimensional spaces, Fund. Math. 131 (1988), 53-67.
  3. J. M. Aarts and L. G. Oversteegen, Flowbox manifolds, Trans. Amer. Math. Soc. 327 (1991), 449-463.
  4. W. Dębski, Two-to-one maps on solenoids and Knaster continua, Fund. Math. 141 (1992), 277-285.
  5. W. Dębski, J. Heath and J. Mioduszewski, Exactly two-to-one maps from continua onto some tree-like continua, Fund. Math., 269-276.
  6. W. H. Gottschalk, On k-to-1 transformations, Bull. Amer. Math. Soc. 53 (1947), 168-169.
  7. J. Grispolakis and E. D. Tymchatyn, Continua which are images of weakly confluent mappings only, (I), Houston J. Math. 5 (1979), 483-501.
  8. O. G. Harrold, Exactly (k,1) transformations on connected linear graphs, Amer. J. Math. 62 (1940), 823-834.
  9. J. Heath, 2-to-1 maps with hereditarily indecomposable images, Proc. Amer. Math. Soc. 113 (1991), 839-846.
  10. J. Heath, There is no exactly k-to-1 function from any continuum onto [0,1], or any dendrite, with only finitely many discontinuities, Trans. Amer. Math. Soc. 306 (1988), 293-305.
  11. J. Hocking and G. Young, Topology, Addison-Wesley, 1961.
  12. H. B. Keynes and M. Sears, Modeling expansion in real flows, Pacific J. Math. 85 (1979), 111-124.
  13. J. Mioduszewski, On two-to-one continuous functions, Dissertationes Math. (Rozprawy Mat.) 24 (1961).
  14. S. B. Nadler, Jr. and L. E. Ward, Jr., Concerning exactly (n,1) images of continua, Proc. Amer. Math. Soc. 87 (1983), 351-354.

Additional information

http://matwbn.icm.edu.pl/ksiazki/fm/fm150/fm15022.pdf

Pages:
113-126
Main language of publication
English
Received
1993-11-30
Accepted
1995-12-01
Published
1996
Exact and natural sciences