ArticleOriginal scientific text

Title

Locally constant functions

Authors 1, 1

Affiliations

  1. Department of Mathematics, University of Wisconsin Madison, Wisconsin 53706 U.S.A.

Abstract

Let X be a compact Hausdorff space and M a metric space. E0(X,M) is the set of f ∈ C(X,M) such that there is a dense set of points x ∈ X with f constant on some neighborhood of x. We describe some general classes of X for which E0(X,M) is all of C(X,M). These include βℕ\ℕ, any nowhere separable LOTS, and any X such that forcing with the open subsets of X does not add reals. In the case where M is a Banach space, we discuss the properties of E0(X,M) as a normed linear space. We also build three first countable Eberlein compact spaces, F,G,H, with various E0 properties. For all metric M, E0(F,M) contains only the constant functions, and E0(G,M)=C(G,M). If M is the Hilbert cube or any infinite-dimensional Banach space, then E0(H,M)C(H,M), but E0(H,M)=C(H,M) whenever Mn for some finite n.

Bibliography

  1. A. V. Arkhangel'skiĭ and V. V. Fedorchuk, General Topology I, Basic Concepts and Constructions, Dimension Theory, Springer, 1990.
  2. A. Bella, A. Hager, J. Martinez, S. Woodward and H. Zhou, Specker spaces and their absolutes, I, preprint.
  3. A. Bella, J. Martinez and S. Woodward, Algebras and spaces of dense constancies, preprint.
  4. Y. Benyamini, M. E. Rudin and M. Wage, Continuous images of weakly compact subsets of Banach spaces, Pacific J. Math. 70 (1977), 309-324.
  5. A. Bernard, Une fonction non Lipschitzienne peut-elle opérer sur un espace de Banach de fonctions non trivial?, J. Funct. Anal. 122 (1994), 451-477.
  6. A. Bernard, A strong superdensity property for some subspaces of C(X), prépublication de l'Institut Fourier, Laboratoire de Mathématiques, 1994.
  7. A. Bernard and S. J. Sidney, Banach like normed linear spaces, preprint, 1994.
  8. M. Džamonja and K. Kunen, Properties of the class of measure separable compact spaces, Fund. Math. 147 (1995), 261-277.
  9. P. R. Halmos, Lectures on Boolean Algebras, Van Nostrand, 1963.
  10. T. Jech, Set Theory, Academic Press, 1978.
  11. K. Kunen, Set Theory, North-Holland, 1980.
  12. J. Martinez and S. Woodward, Specker spaces and their absolutes, II, Algebra Universalis, to appear.
  13. J. van Mill, A homogeneous Eberlein compact space which is not metrizable, Pacific J. Math. 101 (1982), 141-146.
  14. M. E. Rudin and W. Rudin, Continuous functions that are locally constant on dense sets, J. Funct. Anal. 133 (1995), 120-137.
  15. S. J. Sidney, Some very dense subspaces of C(X), preprint, 1994.
  16. R. Sikorski, Boolean Algebras, Springer, 1964.
Pages:
67-96
Main language of publication
English
Received
1995-05-22
Accepted
1995-11-14
Published
1996
Exact and natural sciences