Download PDF - Locally constant functions
ArticleOriginal scientific text
Title
Locally constant functions
Authors 1, 1
Affiliations
- Department of Mathematics, University of Wisconsin Madison, Wisconsin 53706 U.S.A.
Abstract
Let X be a compact Hausdorff space and M a metric space. is the set of f ∈ C(X,M) such that there is a dense set of points x ∈ X with f constant on some neighborhood of x. We describe some general classes of X for which is all of C(X,M). These include βℕ\ℕ, any nowhere separable LOTS, and any X such that forcing with the open subsets of X does not add reals. In the case where M is a Banach space, we discuss the properties of as a normed linear space. We also build three first countable Eberlein compact spaces, F,G,H, with various properties. For all metric M, contains only the constant functions, and . If M is the Hilbert cube or any infinite-dimensional Banach space, then , but whenever for some finite n.
Bibliography
- A. V. Arkhangel'skiĭ and V. V. Fedorchuk, General Topology I, Basic Concepts and Constructions, Dimension Theory, Springer, 1990.
- A. Bella, A. Hager, J. Martinez, S. Woodward and H. Zhou, Specker spaces and their absolutes, I, preprint.
- A. Bella, J. Martinez and S. Woodward, Algebras and spaces of dense constancies, preprint.
- Y. Benyamini, M. E. Rudin and M. Wage, Continuous images of weakly compact subsets of Banach spaces, Pacific J. Math. 70 (1977), 309-324.
- A. Bernard, Une fonction non Lipschitzienne peut-elle opérer sur un espace de Banach de fonctions non trivial?, J. Funct. Anal. 122 (1994), 451-477.
- A. Bernard, A strong superdensity property for some subspaces of C(X), prépublication de l'Institut Fourier, Laboratoire de Mathématiques, 1994.
- A. Bernard and S. J. Sidney, Banach like normed linear spaces, preprint, 1994.
- M. Džamonja and K. Kunen, Properties of the class of measure separable compact spaces, Fund. Math. 147 (1995), 261-277.
- P. R. Halmos, Lectures on Boolean Algebras, Van Nostrand, 1963.
- T. Jech, Set Theory, Academic Press, 1978.
- K. Kunen, Set Theory, North-Holland, 1980.
- J. Martinez and S. Woodward, Specker spaces and their absolutes, II, Algebra Universalis, to appear.
- J. van Mill, A homogeneous Eberlein compact space which is not metrizable, Pacific J. Math. 101 (1982), 141-146.
- M. E. Rudin and W. Rudin, Continuous functions that are locally constant on dense sets, J. Funct. Anal. 133 (1995), 120-137.
- S. J. Sidney, Some very dense subspaces of C(X), preprint, 1994.
- R. Sikorski, Boolean Algebras, Springer, 1964.