PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
1996 | 150 | 1 | 55-66
Tytuł artykułu

Analytic gaps

Treść / Zawartość
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
We investigate when two orthogonal families of sets of integers can be separated if one of them is analytic.
Słowa kluczowe
Twórcy
  • Department of Mathematics, University of Toronto, Toronto, Canada M5S 1A1, stevo@math.toronto.edu
  • Matematicki Institut, Kneza Mihaila 35, 11000 Beograd, Yugoslavia
Bibliografia
  • [0] A. Blass, Near coherence of filters II: Applications to operator ideals, the Stone-Čech remainder of a half-line, order ideal of sequences, and slenderness of groups, Trans. Amer. Math. Soc. 300 (1987), 557-581.
  • [1] J. Bourgain, Some remarks on compact sets of first Baire class, Bull. Soc. Math. Belg. 30 (1978), 3-10.
  • [2] J. Bourgain, D. H. Fremlin and M. Talagrand, Pointwise compact sets of Baire-measurable functions, Amer. J. Math. 100 (1978), 845-886.
  • [3] H. G. Dales and W. H. Woodin, An Introduction to Independence for Analysts, Cambridge University Press, 1978.
  • [4] P. du Bois-Reymond, Eine neue Theorie der Convergenz und Divergenz von Reihen mit positiven Gliedern, J. Reine Angew. Math. 76 (1873), 61-91.
  • [5] Q. Feng, Homogeneity for open partitions of reals, Trans. Amer. Math. Soc. 339 (1993), 659-684.
  • [6] D. H. Fremlin, The partially ordered sets of measure theory and Tukey's ordering, Note Mat. 11 (1991), 177-214.
  • [7] D. H. Fremlin and S. Shelah, On partitions of the real line, Israel J. Math. 32 (1979), 299-304.
  • [8] D. C. Gillespie and W. A. Hurwitz, On sequences of continuous functions having continuous limits, Trans. Amer. Math. Soc. 32 (1930), 527-543.
  • [9] J. Hadamard, Sur les caractères de convergence des séries à termes positifs et sur les fonctions indéfiniment croissantes, Acta Math. 18 (1894), 319-336.
  • [10] F. Hausdorff, Die Graduierung nach dem Endverlauf, Abh. Königl. Sächs. Gesell. Wiss. Math.-Phys. Kl. 31 (1909), 296-334.
  • [11] F. Hausdorff, Summen von $ℵ_1$ Mengen, Fund. Math. 26 (1936), 241-255.
  • [12] W. Hurewicz, Relativ Perfekte Teile von Punktmengen und Mengen (A), Fund. Math. 12 (1928), 78-109.
  • [13] A. S. Kechris, Classical Descriptive Set Theory, Springer, 1995.
  • [14] A. S. Kechris, A. Louveau and W. H. Woodin, The structure of σ-ideals of compact sets, Trans. Amer. Math. Soc. 301 (1987), 263-288.
  • [15] A. Krawczyk, Rosenthal compactum and analytic sets, Proc. Amer. Math. Soc. 115 (1992), 1095-1100.
  • [16] K. Kunen, Some comments on box products, in: Infinite and Finite Sets, Keszthely 1973, Colloq. Math. Soc. János Bolyai 10, North-Holland, Amsterdam, 1975, 1011-1016.
  • [17] K. Kunen, (κ,λ*) gaps under MA, note of August 1976.
  • [18] K. Kunen, An Introduction to Independence Proofs, North-Holland, 1980.
  • [19] C. Laflamme, Bounding and dominating number of families of functions on ω, Math. Logic Quart. 40 (1994), 207-223.
  • [20] N. Luzin, On parts of the natural series, Izv. Akad. Nauk SSSR Ser. Mat. 11 (1947), 714-722 (in Russian).
  • [21] R. Pol, On pointwise and weak topology in function spaces, preprint, Uniw. Warszawski, 1984.
  • [22] R. Pol, Note on pointwise convergence of sequences of analytic sets, Mathematika 36 (1989), 290-300.
  • [23] H. P. Rosenthal, Some recent discoveries in the isomorphic theory of Banach spaces, Bull. Amer. Math. Soc. 84 (1978), 803-831.
  • [24] S. Shelah, Cardinal Arithmetic, Oxford University Press, 1995.
  • [25] W. Szlenk, The non-existence of a separable reflexive Banach space universal for all separable reflexive Banach spaces, Studia Math. 30 (1968), 53-61.
  • [26] S. Todorčević, Partition Problems in Topology, Amer. Math. Soc., Providence, 1989.
  • [27] Z. Zalcwasser, Sur une propriété du champ des fonctions continues, Studia Math. 2 (1930), 63-67.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.bwnjournal-article-fmv150i1p55bwm
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.