ArticleOriginal scientific textUltrametric spaces bi-Lipschitz embeddable in
Title
Ultrametric spaces bi-Lipschitz embeddable in
Authors 1
Affiliations
- Department of Mathematics, University of Helsinki, P.O. Box 4 (Yliopistonkatu 5), FIN-00014 Helsinki, Finland
Abstract
It is proved that if an ultrametric space can be bi-Lipschitz embedded in , then its Assouad dimension is less than n. Together with a result of Luukkainen and Movahedi-Lankarani, where the converse was shown, this gives a characterization in terms of Assouad dimension of the ultrametric spaces which are bi-Lipschitz embeddable in .
Bibliography
- [ABBW] M. Aschbacher, P. Baldi, E. B. Baum and R. M. Wilson, Embeddings of ultrametric spaces in finite dimensional structures, SIAM J. Algebraic Discrete Methods 8 (1987), 564-577.
- [A] P. Assouad, Étude d'une dimension métrique liée à la possibilité de plongements dans
, C. R. Acad. Sci. Paris Sér. A 288 (1979), 731-734. - [LM-L] J. Luukkainen and H. Movahedi-Lankarani, Minimal bi-Lipschitz embedding dimension of ultrametric spaces, Fund. Math. 144 (1994), 181-193.
- [M-LW] H. Movahedi-Lankarani and R. Wells, Ultrametrics and geometric measures, Proc. Amer. Math. Soc. 123 (1995), 2579-2584.
- [S] S. Semmes, On the nonexistence of bilipschitz parameterizations and geometric problems about
weights, Rev. Mat. Iberoamericana, to appear.
Additional information
http://matwbn.icm.edu.pl/ksiazki/fm/fm150/fm15014.pdf