ArticleOriginal scientific text
Title
Hyperspaces of two-dimensional continua
Authors 1, 1
Affiliations
- Department of Mathematics, Haifa University, Mount Carmel, Haifa 31905, Israel
Abstract
Let X be a compact metric space and let C(X) denote the space of subcontinua of X with the Hausdorff metric. It is proved that every two-dimensional continuum X contains, for every n ≥ 1, a one-dimensional subcontinuum with . This implies that X contains a compact one-dimensional subset T with dim C (T) = ∞.
Keywords
hyperspaces, hereditarily indecomposable continua, one- and two-dimensional continua
Bibliography
- R. H. Bing, Higher-dimensional hereditarily indecomposable continua, Trans. Amer. Math. Soc. 71 (1951), 267-273.
- A. Lelek, On mappings that change dimension of spheres, Colloq. Math. 10 (1963), 45-48.
- M. Levin, Hyperspaces and open monotone maps of hereditarily indecomposable continua, Proc. Amer. Math. Soc., to appear.
- M. Levin and Y. Sternfeld, Mappings which are stable with respect to the property dim f(X)≥ k, Topology Appl. 52 (1993), 241-265.
- M. Levin and Y. Sternfeld, The space of subcontinua of a 2-dimensional continuum is infinite dimensional, Proc. Amer. Math. Soc., to appear.
- S. B. Nadler Jr., Hyperspaces of Sets, Dekker, 1978.
- Y. Sternfeld, Mappings in dendrites and dimension, Houston J. Math. 19 (1993), 483-497.
Additional information
http://matwbn.icm.edu.pl/ksiazki/fm/fm150/fm15013.pdf