ArticleOriginal scientific text

Title

The Dugundji extension property can fail in ωµ -metrizable spaces

Authors 1, 1

Affiliations

  1. Department of Mathematical, Sciences University of North Carolina at Greensboro Greensboro, North Carolina 27410, U.S.A.

Abstract

We show that there exist ωμ-metrizable spaces which do not have the Dugundji extension property (2ω1 with the countable box topology is such a space). This answers a question posed by the second author in 1972, and shows that certain results of van Douwen and Borges are false.

Keywords

Dugundji extension theorem, ωμ-metrizable spaces, box topology, Baire category, Michael line

Bibliography

  1. [1] C. J. R. Borges, On stratifiable spaces, Pacific J. Math. 17 (1966), 1-16.
  2. [2] C. J. R. Borges, Absolute extensor spaces: a correction and an answer, Pacific J. Math. 50 (1974), 29-30.
  3. [3] K. Borsuk, Über Isomorphie der Funktionalräume, Bull. Internat. Acad. Polon. Ser. A 1933 (1//3), 1-10.
  4. [4] J. Ceder, Some generalizations of metric spaces, Pacific J. Math. 11 (1961), 105-125.
  5. [5] W. W. Comfort and S. Negrepontis, The Theory of Ultrafilters, Springer, New York, 1974.
  6. [6] E. K. van Douwen, Simultaneous extension of continuous functions, in: E. K. van Douwen, Collected Papers, Vol. 1, J. van Mill (ed.), North-Holland, Amsterdam, 1994.
  7. [7] J. Dugundji, An extension of Tietze's theorem, Pacific J. Math. 1 (1951), 353-367.
  8. [8] R. Engelking, On closed images of the space of irrationals, Proc. Amer. Math. Soc. 21 (1969), 583-586.
  9. [9] R. Engelking, General Topology, Sigma Ser. Pure Math. 6, Heldermann, Berlin, 1989.
  10. [10] R. W. Heath and D. J. Lutzer, Dugundji extension theorems for linearly ordered spaces, Pacific J. Math. 55 (1974), 419-425.
  11. [11] P. J. Nyikos and H. C. Reichel, Topological characterizations of ωμ-metrizable spaces, Topology Appl. 44 (1992), 293-308.
  12. [12] I. S. Stares, Concerning the Dugundji extension property, Topology Appl. 63 (1995), 165-172.
  13. [13] J. E. Vaughan, Linearly stratifiable spaces, Pacific J. Math. 43 (1972), 253-265.
  14. [14] S. W. Williams, Box products, in: Handbook of Set-Theoretic Topology, North-Holland, 1984, 169-200.
Pages:
11-16
Main language of publication
English
Received
1995-05-19
Accepted
1995-11-07
Published
1996
Exact and natural sciences