EN
We show that MA$_{σ-centered}(ω_1)$ implies that normal locally compact metacompact spaces are paracompact, and that MA($ω_1$) implies normal locally compact metalindelöf spaces are paracompact. The latter result answers a question of S. Watson. The first result implies that there is a model of set theory in which all normal locally compact metacompact spaces are paracompact, yet there is a normal locally compact metalindelöf space which is not paracompact.