ArticleOriginal scientific text
Title
Transverse Hausdorff dimension of codim-1 C2-foliations
Authors 1, 2
Affiliations
- Department of Mathematics and Informatics, Chiba University, Chiba, Japan
- Institute of Mathematics, Łódź University, Banacha 22, 90-238 Łódź, Poland
Abstract
The Hausdorff dimension of the holonomy pseudogroup of a codimension-one foliation ℱ is shown to coincide with the Hausdorff dimension of the space of compact leaves (traced on a complete transversal) when ℱ is non-minimal, and to be equal to zero when ℱ is minimal with non-trivial leaf holonomy.
Bibliography
- [Ar] V. I. Arnold, Small denominators. I. Mappings of the circumference onto itself, Izv. Akad. Nauk SSSR Ser. Mat. 25 (1962), 21-86 (in Russian); English transl.: Amer. Math. Soc. Transl. 46 (1965), 213-284.
- [Ed] G. A. Edgar, Measure, Topology and Fractal Geometry, Undergrad. Texts in Math., Springer, New York, 1990.
- [HH] G. Hector and U. Hirsch, Introduction to the Geometry of Foliations, Part B, Vieweg, Braunschweig, 1983.
- [He] M. Herman, Sur la conjugaison différentiable des difféomorphismes du cercle à des rotations, Publ. Math. IHES 49 (1979), 1-233.
- [La] C. Lamoureux, Quelques conditions d'existence de feuilles compactes, Ann. Inst. Fourier (Grenoble) 24 (4) (1974), 229-240.
- [Sa] R. Sacksteder, Foliations and pseudogroups, Amer. J. Math. 87 (1965), 79-102.
- [Ta] I. Tamura, Topology of Foliations: An Introduction, Amer. Math. Soc., Providence, 1992.
- [Wa] P. Walczak, Losing Hausdorff dimension while generating pseudogroups, this issue, 211-237.
Additional information
http://matwbn.icm.edu.pl/ksiazki/fm/fm149/fm14934.pdf