ArticleOriginal scientific text
Title
Losing Hausdorff dimension while generating pseudogroups
Authors 1
Affiliations
- Institute of Mathematics, Łódź University, Banacha 22, 90-238 Łódź, Poland
Abstract
Considering different finite sets of maps generating a pseudogroup G of locally Lipschitz homeomorphisms between open subsets of a compact metric space X we arrive at a notion of a Hausdorff dimension of G. Since , the dimension loss can be considered as a "topological price" one has to pay to generate G. We collect some properties of and (for example, both of them are invariant under Lipschitz isomorphisms of pseudogroups) and we either estimate or calculate for pseudogroups arising from classical dynamical systems, group actions, foliations, etc.
Bibliography
- [Ba] M. F. Barnsley, Fractals Everywhere, Academic Press, Boston, 1993.
- [Be] A. F. Beardon, Iteration of Rational Functions, Grad. Texts in Math., Springer, New York, 1991.
- [Bi] A. Biś, Entropy of topological directions, preprint.
- [Bo] R. Bowen, Hausdorff dimension of quasi-circles, Publ. Math. IHES 50 (1979), 11-26.
- [CL] C. Camacho and A. Lins Neto, Geometric Theory of Foliations, Birkhäuser, Boston, 1985.
- [Ca] A. Candel, Uniformization of surface laminations, Ann. Sci. École Norm. Sup. 26 (1993), 489-516.
- [C1] J. W. Cannon, The combinatorial structure of cocompact discrete hyperbolic groups, Geom. Dedicata 16 (1984), 123-148.
- [C2] J. W. Cannon, The theory of negatively curved spaces and groups, in: Ergodic Theory, Symbolic Dynamics and Hyperbolic Spaces, T. Bedford, M. Keane and C. Series (eds.), Oxford Univ. Press, Oxford, 1991, 315-369.
- [CC] J. Cantwell and L. Conlon, Foliations and subshifts, Tôhoku Math. J. 40 (1988), 165-187.
- [Ch] C. Champetier, Petite simplification dans les groupes hyperboliques, Ann. Fac. Sci. Toulouse 3 (1994), 161-221.
- [CDP] M. Coornaert, T. Delzant et A. Papadopoulos, Géométrie et théorie des groupes, Lecture Notes in Math. 1441, Springer, Berlin, 1991.
- [Ed] G. A. Edgar, Measure, Topology and Fractal Geometry, Undergrad. Texts in Math., Springer, New York, 1990.
- [Eg1] S. Egashira, Expansion growth of foliations, Ann. Fac. Sci. Toulouse 2 (1993), 15-52.
- [Eg2] S. Egashira, Expansion growth of horospherical foliations, J. Fac. Sci. Univ. Tokyo 40 (1994), 663-682.
- [Fa] K. Falconer, Fractal Geometry, Wiley, Chichester, 1990.
- [FM] K. Falconer and D. Marsh, Classification of quasi-circles by Hausdorff dimension, Nonlinearity 2 (1989), 489-493.
- [Fr] H. Frings, Generalized entropy for foliations, Thesis, Düsseldorf, 1991.
- [Ga] F. R. Gantmacher, The Theory of Matrices, Vol. 2, Chelsea, New York, 1959.
- [Gar] L. Garnett, Foliations, the ergodic theorem and Brownian motion, J. Funct. Anal. 51 (1983), 285-311.
- [Gh] E. Ghys, Rigidité différentiable des groupes fuchsiens, Publ. Math. IHES, to appear.
- [GH1] E. Ghys et P. de la Harpe (eds.), Sur les Groupes Hyperboliques d'après Mikhael Gromov, Birkhäuser, Boston, 1990.
- [GH2] E. Ghys et P. de la Harpe (eds.), Infinite groups as geometric objects (after Gromov), in: Ergodic Theory, Symbolic Dynamics and Hyperbolic Spaces, T. Bedford, M. Keane and C. Series (eds.), Oxford Univ. Press, Oxford, 1991, 299-314.
- [GHV] E. Ghys, P. de la Harpe and A. Verjovsky (eds.), Group Theory from Geometrical Viewpoint, World. Sci., Singapore, 1991.
- [GLW] E. Ghys, R. Langevin and P. Walczak, Entropie géométrique des feuilletages, Acta Math. 160 (1988), 105-142.
- [Go] C. Godbillon, Feuilletages, Birkhäuser, Basel, 1991.
- [Gr] M. Gromov, Hyperbolic groups, in: Essays in Group Theory, S. M. Gersten (ed.), MSRI Publ. 8, Springer, Berlin, 1987, 75-263.
- [GLP] M. Gromov, J. Lafontaine et P. Pansu, Structures métriques sur les variétés riemanniennes, Cedic/Fernand Nathan, Paris, 1981.
- [Ha] A. Haefliger, Some remarks on foliations with minimal leaves, J. Differential Geom. 15 (1980), 269-284.
- [HH] G. Hector and U. Hirsch, Introduction to the Geometry of Foliations, Parts A and B, Vieweg, Braunschweig, 1981 and 1983.
- [Hi] M. Hirsch, A stable analytic foliation with only exceptional minimal sets, in: Dynamical Systems, Warwick 1974, Lecture Notes in Math. 468, Springer, Berlin, 1975, 9-10.
- [Hu1] S. Hurder, Ergodic theory of foliations and a theorem of Sacksteder, in: Dynamical Systems, Proc. Special Year at Univ. of Maryland, 1986/87, Lecture Notes in Math. 1342, Springer, Berlin, 1988, 291-328.
- [Hu2] S. Hurder, Exceptional minimal sets of
-group actions on the circle, Ergodic Theory Dynam. Systems 11 (1991), 455-467. - [Hu3] S. Hurder, Rigidity for Anosov actions of higher rank lattices, Ann. of Math. 135 (1992), 361-410.
- [Hu4] S. Hurder, A survey on rigidity theory of Anosov actions, in: Differential Topology, Foliations and Group Actions, Rio de Janeiro 1992, P. Schweitzer et al. (eds.), Contemp. Math. 161, Amer. Math. Soc., Providence, 1994, 143-173.
- [HK] S. Hurder and A. Katok, Ergodic theory and Weil measures for foliations, Ann. of Math. 126 (1987), 221-275.
- [In] T. Inaba, Examples of exceptional minimal sets, in: A Fête of Topology, Academic Press, Boston 1988, 95-100.
- [IW] T. Inaba and P. Walczak, Transverse Hausdorff dimension of codim-1
-foliations, this issue, 239-244. - [Ke] M. Kellum, Uniformly quasi-isometric foliations, Ergodic Theory Dynam. Systems 13 (1993), 101-122.
- [Kl] W. Klingenberg, Riemannian Geometry, de Gruyter, Berlin, 1982.
- [LW1] R. Langevin and P. Walczak, Entropie d'une dynamique, C. R. Acad. Sci. Paris 312 (1991), 141-144.
- [LW2] R. Langevin and P. Walczak, Entropy, transverse entropy and partitions of unity, Ergodic Theory Dynam. Systems 14 (1994), 551-563.
- [LW3] R. Langevin and P. Walczak, Some invariants measuring dynamics of codimension-one foliations, in: Geometric Study of Foliations, T. Mizutani et al. (eds.), World Sci., Singapore, 1994, 345-358.
- [Le] G. Levitt, On the cost of generating an equivalence relation, Ergodic Theory Dynam. Systems 15 (1995), 1173-1181.
- [Ma] J. Marion, Mesure de Hausdorff d'un fractal à similitude interne, Ann. Sci. Math. Québec 10 (1986), 51-84.
- [Pa] W. Parry, Intrinsic Markov chains, Trans. Amer. Math. Soc. 112 (1964), 55-65.
- [Pl] J. Plante, Foliations with measure preserving holonomy, Ann. of Math. 102 (1975), 327-361.
- [Ru] W. Rudin, Real and Complex Analysis, McGraw-Hill, New York, 1966.
- [Sm] S. Smale, Differentiable dynamical systems, Bull. Amer. Math. Soc. 73 (1967), 747-815.
- [Su] D. Sullivan, Bounds, quadratic differentials, and renormalization conjectures, in: Mathematics into the 21st Century, Vol. 2, Amer. Math. Soc. Cent. Publ., Providence, 1991, 417-466.
- [Ta] I. Tamura, Topology of Foliations: An Introduction, Amer. Math. Soc., Providence, 1992.
- [TT] S. J. Taylor and C. Tricot, Packing measure and its evaluation for a Brownian path, Trans. Amer. Math. Soc. 288 (1985), 679-699.
- [W1] P. Walczak, Dynamics of the geodesic flow of a foliation, Ergodic Theory Dynam. Systems 8 (1988), 637-650.
- [W2] P. Walczak, Existence of smooth invariant measures for geodesic flows of foliations of Riemannian manifolds, Proc. Amer. Math. Soc. 120 (1994), 903-906.
- [Wa] P. Walters, An Introduction to Ergodic Theory, Springer, New York, 1982.
- [Wi] B. Wirtz, Entropies, Thesis, Dijon, 1993.
- [Zi1] R. Zimmer, Strong rigidity for ergodic actions of semisimple Lie groups, Ann. of Math. 112 (1980), 511-529.
- [Zi2] R. Zimmer, Ergodic theory, semisimple Lie groups and foliations by manifolds of negative curvature, Publ. Math. IHES 55 (1982).
- [Zi3] R. Zimmer, Ergodic Theory and Semisimple Groups, Birkhäuser, Boston, 1984.
Additional information
http://matwbn.icm.edu.pl/ksiazki/fm/fm149/fm14933.pdf